1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Script
//!
//! Scripts define Bitcoin's digital signature scheme: a signature is formed
//! from a script (the second half of which is defined by a coin to be spent,
//! and the first half provided by the spending transaction), and is valid
//! iff the script leaves `TRUE` on the stack after being evaluated.
//! Bitcoin's script is a stack-based assembly language similar in spirit to
//! Forth.
//!
//! This module provides the structures and functions needed to support scripts.
//!

use std::default::Default;
use std::{error, fmt};

use serde;

use blockdata::opcodes;
use network::encodable::{ConsensusDecodable, ConsensusEncodable};
use network::serialize::{SimpleDecoder, SimpleEncoder};

#[derive(Clone, PartialEq, Eq, Hash)]
/// A Bitcoin script
pub struct Script(Box<[u8]>);

impl fmt::Debug for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut index = 0;

        try!(f.write_str("Script("));
        while index < self.0.len() {
            let opcode = opcodes::All::from(self.0[index]);
            index += 1;

            let data_len = if let opcodes::Class::PushBytes(n) = opcode.classify() {
                n as usize
            } else {
                match opcode {
                    opcodes::All::OP_PUSHDATA1 => {
                        if self.0.len() < index + 1 {
                            try!(f.write_str("<unexpected end>"));
                            break;
                        }
                        match read_uint(&self.0[index..], 1) {
                            Ok(n) => { index += 1; n as usize }
                            Err(_) => { try!(f.write_str("<bad length>")); break; }
                        }
                    }
                    opcodes::All::OP_PUSHDATA2 => {
                        if self.0.len() < index + 2 {
                            try!(f.write_str("<unexpected end>"));
                            break;
                        }
                        match read_uint(&self.0[index..], 2) {
                            Ok(n) => { index += 2; n as usize }
                            Err(_) => { try!(f.write_str("<bad length>")); break; }
                        }
                    }
                    opcodes::All::OP_PUSHDATA4 => {
                        if self.0.len() < index + 4 {
                            try!(f.write_str("<unexpected end>"));
                            break;
                        }
                        match read_uint(&self.0[index..], 4) {
                            Ok(n) => { index += 4; n as usize }
                            Err(_) => { try!(f.write_str("<bad length>")); break; }
                        }
                    }
                    _ => 0
                }
            };

            if index > 1 { try!(f.write_str(" ")); }
            // Write the opcode
            if opcode == opcodes::All::OP_PUSHBYTES_0 {
                try!(f.write_str("OP_0"));
            } else {
                try!(write!(f, "{:?}", opcode));
            }
            // Write any pushdata
            if data_len > 0 {
                try!(f.write_str(" "));
                if index + data_len <= self.0.len() {
                    for ch in &self.0[index..index + data_len] {
                            try!(write!(f, "{:02x}", ch));
                    }
                    index += data_len;
                } else {
                    try!(f.write_str("<push past end>"));
                    break;
                }
            }
        }
        f.write_str(")")
    }
}

impl fmt::Display for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

impl fmt::LowerHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for &ch in self.0.iter() {
            try!(write!(f, "{:02x}", ch));
        }
        Ok(())
    }
}

impl fmt::UpperHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for &ch in self.0.iter() {
            try!(write!(f, "{:02X}", ch));
        }
        Ok(())
    }
}

#[derive(PartialEq, Eq, Debug, Clone)]
/// An object which can be used to construct a script piece by piece
pub struct Builder(Vec<u8>);
display_from_debug!(Builder);

/// Ways that a script might fail. Not everything is split up as
/// much as it could be; patches welcome if more detailed errors
/// would help you.
#[derive(PartialEq, Eq, Debug, Clone)]
pub enum Error {
    /// Some opcode expected a parameter, but it was missing or truncated
    EarlyEndOfScript,
    /// Tried to read an array off the stack as a number when it was more than 4 bytes
    NumericOverflow,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(error::Error::description(self))
    }
}

impl error::Error for Error {
    fn cause(&self) -> Option<&error::Error> { None }

    fn description(&self) -> &'static str {
        match *self {
            Error::EarlyEndOfScript => "unexpected end of script",
            Error::NumericOverflow => "numeric overflow (number on stack larger than 4 bytes)",
        }
    }
}

/// Helper to encode an integer in script format
fn build_scriptint(n: i64) -> Vec<u8> {
    if n == 0 { return vec![] }

    let neg = n < 0;

    let mut abs = if neg { -n } else { n } as usize;
    let mut v = vec![];
    while abs > 0xFF {
        v.push((abs & 0xFF) as u8);
        abs >>= 8;
    }
    // If the number's value causes the sign bit to be set, we need an extra
    // byte to get the correct value and correct sign bit
    if abs & 0x80 != 0 {
        v.push(abs as u8);
        v.push(if neg { 0x80u8 } else { 0u8 });
    }
    // Otherwise we just set the sign bit ourselves
    else {
        abs |= if neg { 0x80 } else { 0 };
        v.push(abs as u8);
    }
    v
}

/// Helper to decode an integer in script format
/// Notice that this fails on overflow: the result is the same as in
/// bitcoind, that only 4-byte signed-magnitude values may be read as
/// numbers. They can be added or subtracted (and a long time ago,
/// multiplied and divided), and this may result in numbers which
/// can't be written out in 4 bytes or less. This is ok! The number
/// just can't be read as a number again.
/// This is a bit crazy and subtle, but it makes sense: you can load
/// 32-bit numbers and do anything with them, which back when mult/div
/// was allowed, could result in up to a 64-bit number. We don't want
/// overflow since that's suprising --- and we don't want numbers that
/// don't fit in 64 bits (for efficiency on modern processors) so we
/// simply say, anything in excess of 32 bits is no longer a number.
/// This is basically a ranged type implementation.
pub fn read_scriptint(v: &[u8]) -> Result<i64, Error> {
    let len = v.len();
    if len == 0 { return Ok(0); }
    if len > 4 { return Err(Error::NumericOverflow); }

    let (mut ret, sh) = v.iter()
                         .fold((0, 0), |(acc, sh), n| (acc + ((*n as i64) << sh), sh + 8));
    if v[len - 1] & 0x80 != 0 {
        ret &= (1 << (sh - 1)) - 1;
        ret = -ret;
    }
    Ok(ret)
}

/// This is like "`read_scriptint` then map 0 to false and everything
/// else as true", except that the overflow rules don't apply.
#[inline]
pub fn read_scriptbool(v: &[u8]) -> bool {
    !(v.is_empty() ||
        ((v[v.len() - 1] == 0 || v[v.len() - 1] == 0x80) &&
         v.iter().rev().skip(1).all(|&w| w == 0)))
}

/// Read a script-encoded unsigned integer
pub fn read_uint(data: &[u8], size: usize) -> Result<usize, Error> {
    if data.len() < size {
        Err(Error::EarlyEndOfScript)
    } else {
        let mut ret = 0;
        for (i, item) in data.iter().take(size).enumerate() {
            ret += (*item as usize) << (i * 8);
        }
        Ok(ret)
    }
}

impl Script {
    /// Creates a new empty script
    pub fn new() -> Script { Script(vec![].into_boxed_slice()) }

    /// The length in bytes of the script
    pub fn len(&self) -> usize { self.0.len() }

    /// Whether the script is the empty script
    pub fn is_empty(&self) -> bool { self.0.is_empty() }

    /// Convert the script into a byte vector
    pub fn into_vec(self) -> Vec<u8> { self.0.into_vec() }

    /// Checks whether a script pubkey is a p2sh output
    #[inline]
    pub fn is_p2sh(&self) -> bool {
        self.0.len() == 23 &&
        self.0[0] == opcodes::All::OP_HASH160 as u8 &&
        self.0[1] == opcodes::All::OP_PUSHBYTES_20 as u8 &&
        self.0[22] == opcodes::All::OP_EQUAL as u8
    }

    /// Whether a script can be proven to have no satisfying input
    pub fn is_provably_unspendable(&self) -> bool {
        !self.0.is_empty() && (opcodes::All::from(self.0[0]).classify() == opcodes::Class::ReturnOp ||
                               opcodes::All::from(self.0[0]).classify() == opcodes::Class::IllegalOp)
    }
}

impl Default for Script {
    fn default() -> Script { Script(vec![].into_boxed_slice()) }
}

/// Creates a new script from an existing vector
impl From<Vec<u8>> for Script {
    fn from(v: Vec<u8>) -> Script { Script(v.into_boxed_slice()) }
}

impl_index_newtype!(Script, u8);

/// A "parsed opcode" which allows iterating over a Script in a more sensible way
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Instruction<'a> {
    /// Push a bunch of data
    PushBytes(&'a [u8]),
    /// Some non-push opcode
    Op(opcodes::All),
    /// An opcode we were unable to parse
    Error(Error)
}

/// Iterator over a script returning parsed opcodes
pub struct Instructions<'a> {
    data: &'a [u8]
}

impl<'a> IntoIterator for &'a Script {
    type Item = Instruction<'a>;
    type IntoIter = Instructions<'a>;
    fn into_iter(self) -> Instructions<'a> { Instructions { data: &self.0[..] } }
}

impl<'a> Iterator for Instructions<'a> {
    type Item = Instruction<'a>;

    fn next(&mut self) -> Option<Instruction<'a>> {
        if self.data.is_empty() {
            return None;
        }

        match opcodes::All::from(self.data[0]).classify() {
            opcodes::Class::PushBytes(n) => {
                let n = n as usize;
                if self.data.len() < n + 1 {
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let ret = Some(Instruction::PushBytes(&self.data[1..n+1]));
                self.data = &self.data[n + 1..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA1) => {
                if self.data.len() < 2 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let n = match read_uint(&self.data[1..], 1) {
                    Ok(n) => n,
                    Err(e) => { return Some(Instruction::Error(e)); }
                };
                if self.data.len() < n + 2 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let ret = Some(Instruction::PushBytes(&self.data[2..n+2]));
                self.data = &self.data[n + 2..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA2) => {
                if self.data.len() < 3 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let n = match read_uint(&self.data[1..], 2) {
                    Ok(n) => n,
                    Err(e) => { return Some(Instruction::Error(e)); }
                };
                if self.data.len() < n + 3 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let ret = Some(Instruction::PushBytes(&self.data[3..n + 3]));
                self.data = &self.data[n + 3..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA4) => {
                if self.data.len() < 5 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let n = match read_uint(&self.data[1..], 4) {
                    Ok(n) => n,
                    Err(e) => { return Some(Instruction::Error(e)); }
                };
                if self.data.len() < n + 5 { return Some(Instruction::Error(Error::EarlyEndOfScript)); }
                let ret = Some(Instruction::PushBytes(&self.data[5..n + 5]));
                self.data = &self.data[n + 5..];
                ret
            }
            // Everything else we can push right through
            _ => {
                let ret = Some(Instruction::Op(opcodes::All::from(self.data[0])));
                self.data = &self.data[1..];
                ret
            }
        }
    }
}

impl Builder {
    /// Creates a new empty script
    pub fn new() -> Builder { Builder(vec![]) }

    /// The length in bytes of the script
    pub fn len(&self) -> usize { self.0.len() }

    /// Whether the script is the empty script
    pub fn is_empty(&self) -> bool { self.0.is_empty() }

    /// Adds instructions to push an integer onto the stack. Integers are
    /// encoded as little-endian signed-magnitude numbers, but there are
    /// dedicated opcodes to push some small integers.
    pub fn push_int(mut self, data: i64) -> Builder {
        // We can special-case -1, 1-16
        if data == -1 || (data >= 1 && data <= 16) {
            self.0.push((data - 1 + opcodes::OP_TRUE as i64) as u8);
            self
        }
        // We can also special-case zero
        else if data == 0 {
            self.0.push(opcodes::OP_FALSE as u8);
            self
        }
        // Otherwise encode it as data
        else { self.push_scriptint(data) }
    }

    /// Adds instructions to push an integer onto the stack, using the explicit
    /// encoding regardless of the availability of dedicated opcodes.
    pub fn push_scriptint(self, data: i64) -> Builder {
        self.push_slice(&build_scriptint(data))
    }

    /// Adds instructions to push some arbitrary data onto the stack
    pub fn push_slice(mut self, data: &[u8]) -> Builder {
        // Start with a PUSH opcode
        match data.len() {
            n if n < opcodes::Ordinary::OP_PUSHDATA1 as usize => { self.0.push(n as u8); },
            n if n < 0x100 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA1 as u8);
                self.0.push(n as u8);
            },
            n if n < 0x10000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA2 as u8);
                self.0.push((n % 0x100) as u8);
                self.0.push((n / 0x100) as u8);
            },
            n if n < 0x100000000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA4 as u8);
                self.0.push((n % 0x100) as u8);
                self.0.push(((n / 0x100) % 0x100) as u8);
                self.0.push(((n / 0x10000) % 0x100) as u8);
                self.0.push((n / 0x1000000) as u8);
            }
            _ => panic!("tried to put a 4bn+ sized object into a script!")
        }
        // Then push the acraw
        self.0.extend(data.iter().cloned());
        self
    }

    /// Adds a single opcode to the script
    pub fn push_opcode(mut self, data: opcodes::All) -> Builder {
        self.0.push(data as u8);
        self
    }

    /// Converts the `Builder` into an unmodifiable `Script`
    pub fn into_script(self) -> Script {
        Script(self.0.into_boxed_slice())
    }
}

/// Adds an individual opcode to the script
impl Default for Builder {
    fn default() -> Builder { Builder(vec![]) }
}

/// Creates a new script from an existing vector
impl From<Vec<u8>> for Builder {
    fn from(v: Vec<u8>) -> Builder { Builder(v) }
}

impl_index_newtype!(Builder, u8);

// User-facing serialization
impl serde::Serialize for Script {
    fn serialize<S>(&self, s: &mut S) -> Result<(), S::Error>
        where S: serde::Serializer,
    {
        s.visit_str(&format!("{:x}", self))
    }
}

impl serde::Deserialize for Script {
    fn deserialize<D>(d: &mut D) -> Result<Script, D::Error>
        where D: serde::Deserializer
    {
        use serialize::hex::FromHex;

        struct ScriptVisitor;
        impl serde::de::Visitor for ScriptVisitor {
            type Value = Script;

            fn visit_string<E>(&mut self, v: String) -> Result<Script, E>
                where E: serde::de::Error
            {
                self.visit_str(&v)
            }

            fn visit_str<E>(&mut self, hex_str: &str) -> Result<Script, E>
                where E: serde::de::Error
            {
                let raw_vec: Vec<u8> = try!(hex_str.from_hex()
                                                   .map_err(|_| serde::de::Error::syntax("bad script hex")));
                Ok(Script::from(raw_vec))
            }
        }

        d.visit(ScriptVisitor)
    }
}

// Network serialization
impl<S: SimpleEncoder> ConsensusEncodable<S> for Script {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), S::Error> {
        self.0.consensus_encode(s)
    }
}

impl<D: SimpleDecoder> ConsensusDecodable<D> for Script {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Script, D::Error> {
        Ok(Script(try!(ConsensusDecodable::consensus_decode(d))))
    }
}

#[cfg(test)]
mod test {
    use serialize::hex::FromHex;

    use super::*;
    use super::build_scriptint;

    use network::serialize::{deserialize, serialize};
    use blockdata::opcodes;

    #[test]
    fn script() {
        let mut comp = vec![];
        let mut script = Builder::new();
        assert_eq!(&script[..], &comp[..]);

        // small ints
        script = script.push_int(1);  comp.push(81u8); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(0);  comp.push(0u8);  assert_eq!(&script[..], &comp[..]);
        script = script.push_int(4);  comp.push(84u8); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(-1); comp.push(79u8); assert_eq!(&script[..], &comp[..]);
        // forced scriptint
        script = script.push_scriptint(4); comp.extend([1u8, 4].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        // big ints
        script = script.push_int(17); comp.extend([1u8, 17].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(10000); comp.extend([2u8, 16, 39].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        // notice the sign bit set here, hence the extra zero/128 at the end
        script = script.push_int(10000000); comp.extend([4u8, 128, 150, 152, 0].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(-10000000); comp.extend([4u8, 128, 150, 152, 128].iter().cloned()); assert_eq!(&script[..], &comp[..]);

        // data
        script = script.push_slice("NRA4VR".as_bytes()); comp.extend([6u8, 78, 82, 65, 52, 86, 82].iter().cloned()); assert_eq!(&script[..], &comp[..]);

        // opcodes 
        script = script.push_opcode(opcodes::All::OP_CHECKSIG); comp.push(0xACu8); assert_eq!(&script[..], &comp[..]);
        script = script.push_opcode(opcodes::All::OP_CHECKSIG); comp.push(0xACu8); assert_eq!(&script[..], &comp[..]);
    }

    #[test]
    fn script_builder() {
        // from txid 3bb5e6434c11fb93f64574af5d116736510717f2c595eb45b52c28e31622dfff which was in my mempool when I wrote the test
        let script = Builder::new().push_opcode(opcodes::All::OP_DUP)
                                   .push_opcode(opcodes::All::OP_HASH160)
                                   .push_slice(&"16e1ae70ff0fa102905d4af297f6912bda6cce19".from_hex().unwrap())
                                   .push_opcode(opcodes::All::OP_EQUALVERIFY)
                                   .push_opcode(opcodes::All::OP_CHECKSIG)
                                   .into_script();
        assert_eq!(&format!("{:x}", script), "76a91416e1ae70ff0fa102905d4af297f6912bda6cce1988ac");
    }

    #[test]
    fn script_serialize() {
        let hex_script = "6c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52".from_hex().unwrap();
        let script: Result<Script, _> = deserialize(&hex_script);
        assert!(script.is_ok());
        assert_eq!(serialize(&script.unwrap()).ok(), Some(hex_script));
    }

    #[test]
    fn scriptint_round_trip() {
        assert_eq!(build_scriptint(-1), vec![0x81]);
        assert_eq!(build_scriptint(255), vec![255, 0]);
        assert_eq!(build_scriptint(256), vec![0, 1]);
        assert_eq!(build_scriptint(257), vec![1, 1]);
        assert_eq!(build_scriptint(511), vec![255, 1]);
        for &i in [10, 100, 255, 256, 1000, 10000, 25000, 200000, 5000000, 1000000000,
                             (1 << 31) - 1, -((1 << 31) - 1)].iter() {
            assert_eq!(Ok(i), read_scriptint(&build_scriptint(i)));
            assert_eq!(Ok(-i), read_scriptint(&build_scriptint(-i)));
        }
        assert!(read_scriptint(&build_scriptint(1 << 31)).is_err());
        assert!(read_scriptint(&build_scriptint(-(1 << 31))).is_err());
    }

    macro_rules! hex_script (($s:expr) => (Script::from($s.from_hex().unwrap())));

    #[test]
    fn provably_unspendable_test() {
        // p2pk
        assert_eq!(hex_script!("410446ef0102d1ec5240f0d061a4246c1bdef63fc3dbab7733052fbbf0ecd8f41fc26bf049ebb4f9527f374280259e7cfa99c48b0e3f39c51347a19a5819651503a5ac").is_provably_unspendable(), false);
        assert_eq!(hex_script!("4104ea1feff861b51fe3f5f8a3b12d0f4712db80e919548a80839fc47c6a21e66d957e9c5d8cd108c7a2d2324bad71f9904ac0ae7336507d785b17a2c115e427a32fac").is_provably_unspendable(), false);
        // p2pkhash
        assert_eq!(hex_script!("76a914ee61d57ab51b9d212335b1dba62794ac20d2bcf988ac").is_provably_unspendable(), false);
        assert_eq!(hex_script!("6aa9149eb21980dc9d413d8eac27314938b9da920ee53e87").is_provably_unspendable(), true);
    }

    #[test]
    fn script_json_serialize() {
        use strason;

        let original = hex_script!("827651a0698faaa9a8a7a687");
        let json = strason::from_serialize(&original).unwrap();
        assert_eq!(json.to_bytes(), b"\"827651a0698faaa9a8a7a687\"");
        assert_eq!(json.string(), Some("827651a0698faaa9a8a7a687"));
        let des = json.into_deserialize().unwrap();
        assert_eq!(original, des);
    }

    #[test]
    fn script_debug_display() {
        assert_eq!(format!("{:?}", hex_script!("6363636363686868686800")),
                   "Script(OP_IF OP_IF OP_IF OP_IF OP_IF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_0)");
        assert_eq!(format!("{}", hex_script!("6363636363686868686800")),
                   "Script(OP_IF OP_IF OP_IF OP_IF OP_IF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_0)");
        assert_eq!(format!("{}", hex_script!("2102715e91d37d239dea832f1460e91e368115d8ca6cc23a7da966795abad9e3b699ac")),
                   "Script(OP_PUSHBYTES_33 02715e91d37d239dea832f1460e91e368115d8ca6cc23a7da966795abad9e3b699 OP_CHECKSIG)");
        // Elements Alpha peg-out transaction with some signatures removed for brevity. Mainly to test PUSHDATA1
        assert_eq!(format!("{}", hex_script!("0047304402202457e78cc1b7f50d0543863c27de75d07982bde8359b9e3316adec0aec165f2f02200203fd331c4e4a4a02f48cf1c291e2c0d6b2f7078a784b5b3649fca41f8794d401004cf1552103244e602b46755f24327142a0517288cebd159eccb6ccf41ea6edf1f601e9af952103bbbacc302d19d29dbfa62d23f37944ae19853cf260c745c2bea739c95328fcb721039227e83246bd51140fe93538b2301c9048be82ef2fb3c7fc5d78426ed6f609ad210229bf310c379b90033e2ecb07f77ecf9b8d59acb623ab7be25a0caed539e2e6472103703e2ed676936f10b3ce9149fa2d4a32060fb86fa9a70a4efe3f21d7ab90611921031e9b7c6022400a6bb0424bbcde14cff6c016b91ee3803926f3440abf5c146d05210334667f975f55a8455d515a2ef1c94fdfa3315f12319a14515d2a13d82831f62f57ae")),
                   "Script(OP_0 OP_PUSHBYTES_71 304402202457e78cc1b7f50d0543863c27de75d07982bde8359b9e3316adec0aec165f2f02200203fd331c4e4a4a02f48cf1c291e2c0d6b2f7078a784b5b3649fca41f8794d401 OP_0 OP_PUSHDATA1 552103244e602b46755f24327142a0517288cebd159eccb6ccf41ea6edf1f601e9af952103bbbacc302d19d29dbfa62d23f37944ae19853cf260c745c2bea739c95328fcb721039227e83246bd51140fe93538b2301c9048be82ef2fb3c7fc5d78426ed6f609ad210229bf310c379b90033e2ecb07f77ecf9b8d59acb623ab7be25a0caed539e2e6472103703e2ed676936f10b3ce9149fa2d4a32060fb86fa9a70a4efe3f21d7ab90611921031e9b7c6022400a6bb0424bbcde14cff6c016b91ee3803926f3440abf5c146d05210334667f975f55a8455d515a2ef1c94fdfa3315f12319a14515d2a13d82831f62f57ae)");
    }
}