1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
// Written in 2014 by Andrew Poelstra <apoelstra@wpsoftware.net>
// SPDX-License-Identifier: CC0-1.0

//! Bitcoin network addresses.
//!
//! This module defines the structures and functions needed to encode
//! network addresses in Bitcoin messages.
//!

use crate::prelude::*;

use core::{fmt, iter};
use std::net::{SocketAddr, Ipv6Addr, SocketAddrV4, SocketAddrV6, Ipv4Addr, ToSocketAddrs};

use crate::io;
use crate::network::constants::ServiceFlags;
use crate::consensus::encode::{self, Decodable, Encodable, VarInt, ReadExt, WriteExt};

/// A message which can be sent on the Bitcoin network
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Address {
    /// Services provided by the peer whose address this is
    pub services: ServiceFlags,
    /// Network byte-order ipv6 address, or ipv4-mapped ipv6 address
    pub address: [u16; 8],
    /// Network port
    pub port: u16
}

const ONION: [u16; 3] = [0xFD87, 0xD87E, 0xEB43];

impl Address {
    /// Create an address message for a socket
    pub fn new(socket :&SocketAddr, services: ServiceFlags) -> Address {
        let (address, port) = match *socket {
            SocketAddr::V4(addr) => (addr.ip().to_ipv6_mapped().segments(), addr.port()),
            SocketAddr::V6(addr) => (addr.ip().segments(), addr.port())
        };
        Address { address, port, services }
    }

    /// Extract socket address from an [Address] message.
    /// This will return [io::Error] [io::ErrorKind::AddrNotAvailable]
    /// if the message contains a Tor address.
    pub fn socket_addr(&self) -> Result<SocketAddr, io::Error> {
        let addr = &self.address;
        if addr[0..3] == ONION {
            return Err(io::Error::from(io::ErrorKind::AddrNotAvailable));
        }
        let ipv6 = Ipv6Addr::new(addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]);
        if let Some(ipv4) = ipv6.to_ipv4() {
            Ok(SocketAddr::V4(SocketAddrV4::new(ipv4, self.port)))
        } else {
            Ok(SocketAddr::V6(SocketAddrV6::new(ipv6, self.port, 0, 0)))
        }
    }
}

impl Encodable for Address {
    #[inline]
    fn consensus_encode<W: io::Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let mut len = self.services.consensus_encode(w)?;

        for word in &self.address {
            w.write_all(&word.to_be_bytes())?;
            len += 2;
        }

        w.write_all(&self.port.to_be_bytes())?;
        len += 2;

        Ok(len)
    }
}

impl Decodable for Address {
    #[inline]
    fn consensus_decode<R: io::Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
        Ok(Address {
            services: Decodable::consensus_decode(r)?,
            address: read_be_address(r)?,
            port: u16::swap_bytes(Decodable::consensus_decode(r)?)
        })
    }
}

/// Read a big-endian address from reader.
fn read_be_address<R: io::Read + ?Sized>(r: &mut R) -> Result<[u16; 8], encode::Error> {
    let mut address = [0u16; 8];
    let mut buf = [0u8; 2];

    for word in &mut address {
        io::Read::read_exact(r, &mut buf)?;
        *word = u16::from_be_bytes(buf)
    }
    Ok(address)
}

impl fmt::Debug for Address {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let ipv6 = Ipv6Addr::from(self.address);

        match ipv6.to_ipv4() {
            Some(addr) => write!(f, "Address {{services: {}, address: {}, port: {}}}",
                self.services, addr, self.port),
            None => write!(f, "Address {{services: {}, address: {}, port: {}}}",
                self.services, ipv6, self.port)
        }
    }
}

impl ToSocketAddrs for Address {
    type Iter = iter::Once<SocketAddr>;
    fn to_socket_addrs(&self) -> Result<Self::Iter, io::Error> {
        Ok(iter::once(self.socket_addr()?))
    }
}

/// Supported networks for use in BIP155 addrv2 message
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum AddrV2 {
    /// IPV4
    Ipv4(Ipv4Addr),
    /// IPV6
    Ipv6(Ipv6Addr),
    /// TORV2
    TorV2([u8; 10]),
    /// TORV3
    TorV3([u8; 32]),
    /// I2P
    I2p([u8; 32]),
    /// CJDNS
    Cjdns(Ipv6Addr),
    /// Unknown
    Unknown(u8, Vec<u8>),
}

impl Encodable for AddrV2 {
    fn consensus_encode<W: io::Write + ?Sized>(&self, e: &mut W) -> Result<usize, io::Error> {
        fn encode_addr<W: io::Write + ?Sized>(w: &mut W, network: u8, bytes: &[u8]) -> Result<usize, io::Error> {
            let len = network.consensus_encode(w)?
                + VarInt(bytes.len() as u64).consensus_encode(w)?
                + bytes.len();
            w.emit_slice(bytes)?;
            Ok(len)
        }
        Ok(match *self {
            AddrV2::Ipv4(ref addr) => encode_addr(e, 1, &addr.octets())?,
            AddrV2::Ipv6(ref addr) => encode_addr(e, 2, &addr.octets())?,
            AddrV2::TorV2(ref bytes) => encode_addr(e, 3, bytes)?,
            AddrV2::TorV3(ref bytes) => encode_addr(e, 4, bytes)?,
            AddrV2::I2p(ref bytes) => encode_addr(e, 5, bytes)?,
            AddrV2::Cjdns(ref addr) => encode_addr(e, 6, &addr.octets())?,
            AddrV2::Unknown(network, ref bytes) => encode_addr(e, network, bytes)?
        })
    }
}

impl Decodable for AddrV2 {
    fn consensus_decode<R: io::Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
        let network_id = u8::consensus_decode(r)?;
        let len = VarInt::consensus_decode(r)?.0;
        if len > 512 {
            return Err(encode::Error::ParseFailed("IP must be <= 512 bytes"));
        }
        Ok(match network_id {
            1 => {
                if len != 4 {
                    return Err(encode::Error::ParseFailed("Invalid IPv4 address"));
                }
                let addr: [u8; 4] = Decodable::consensus_decode(r)?;
                AddrV2::Ipv4(Ipv4Addr::new(addr[0], addr[1], addr[2], addr[3]))
            },
            2 => {
                if len != 16 {
                    return Err(encode::Error::ParseFailed("Invalid IPv6 address"));
                }
                let addr: [u16; 8] = read_be_address(r)?;
                if addr[0..3] == ONION {
                    return Err(encode::Error::ParseFailed("OnionCat address sent with IPv6 network id"));
                }
                if addr[0..6] == [0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF] {
                    return Err(encode::Error::ParseFailed("IPV4 wrapped address sent with IPv6 network id"));
                }
                AddrV2::Ipv6(Ipv6Addr::new(addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]))
            },
            3 => {
                if len != 10 {
                    return Err(encode::Error::ParseFailed("Invalid TorV2 address"));
                }
                let id = Decodable::consensus_decode(r)?;
                AddrV2::TorV2(id)
            },
            4 => {
                if len != 32 {
                    return Err(encode::Error::ParseFailed("Invalid TorV3 address"));
                }
                let pubkey = Decodable::consensus_decode(r)?;
                AddrV2::TorV3(pubkey)
            },
            5 => {
                if len != 32 {
                    return Err(encode::Error::ParseFailed("Invalid I2P address"));
                }
                let hash = Decodable::consensus_decode(r)?;
                AddrV2::I2p(hash)
            },
            6 => {
                if len != 16  {
                    return Err(encode::Error::ParseFailed("Invalid CJDNS address"));
                }
                let addr: [u16; 8] = read_be_address(r)?;
                // check the first byte for the CJDNS marker
                if addr[0] != u16::from_be_bytes([0xFC, 0x00]) {
                    return Err(encode::Error::ParseFailed("Invalid CJDNS address"));
                }
                AddrV2::Cjdns(Ipv6Addr::new(addr[0], addr[1], addr[2], addr[3], addr[4], addr[5], addr[6], addr[7]))
            },
            _ => {
                // len already checked above to be <= 512
                let mut addr = vec![0u8; len as usize];
                r.read_slice(&mut addr)?;
                AddrV2::Unknown(network_id, addr)
            }
        })
    }
}

/// Address received from BIP155 addrv2 message
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AddrV2Message {
    /// Time that this node was last seen as connected to the network
    pub time: u32,
    /// Service bits
    pub services: ServiceFlags,
    /// Network ID + Network Address
    pub addr: AddrV2,
    /// Network port, 0 if not applicable
    pub port: u16
}

impl AddrV2Message {
    /// Extract socket address from an [AddrV2Message] message.
    /// This will return [io::Error] [io::ErrorKind::AddrNotAvailable]
    /// if the address type can't be converted into a [SocketAddr].
    pub fn socket_addr(&self) -> Result<SocketAddr, io::Error> {
        match self.addr {
            AddrV2::Ipv4(addr) => Ok(SocketAddr::V4(SocketAddrV4::new(addr, self.port))),
            AddrV2::Ipv6(addr) => Ok(SocketAddr::V6(SocketAddrV6::new(addr, self.port, 0, 0))),
            _ => Err(io::Error::from(io::ErrorKind::AddrNotAvailable)),
        }
    }
}

impl Encodable for AddrV2Message {
    fn consensus_encode<W: io::Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
        let mut len = 0;
        len += self.time.consensus_encode(w)?;
        len += VarInt(self.services.to_u64()).consensus_encode(w)?;
        len += self.addr.consensus_encode(w)?;

        w.write_all(&self.port.to_be_bytes())?;
        len += 2; // port u16 is two bytes.

        Ok(len)
    }
}

impl Decodable for AddrV2Message {
    fn consensus_decode<R: io::Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
        Ok(AddrV2Message {
            time: Decodable::consensus_decode(r)?,
            services: ServiceFlags::from(VarInt::consensus_decode(r)?.0),
            addr: Decodable::consensus_decode(r)?,
            port: u16::swap_bytes(Decodable::consensus_decode(r)?),
        })
    }
}

impl ToSocketAddrs for AddrV2Message {
    type Iter = iter::Once<SocketAddr>;
    fn to_socket_addrs(&self) -> Result<Self::Iter, io::Error> {
        Ok(iter::once(self.socket_addr()?))
    }
}

#[cfg(test)]
mod test {
    use core::str::FromStr;
    use super::{AddrV2Message, AddrV2, Address};
    use crate::network::constants::ServiceFlags;
    use std::net::{SocketAddr, IpAddr, Ipv4Addr, Ipv6Addr};
    use crate::hashes::hex::FromHex;

    use crate::consensus::encode::{deserialize, serialize};

    #[test]
    fn serialize_address_test() {
        assert_eq!(serialize(&Address {
            services: ServiceFlags::NETWORK,
            address: [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001],
            port: 8333
        }),
        vec![1u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0xff, 0xff, 0x0a, 0, 0, 1, 0x20, 0x8d]);
    }

    #[test]
    fn debug_format_test() {
        let mut flags = ServiceFlags::NETWORK;
        assert_eq!(
            format!("The address is: {:?}", Address {
                services: flags.add(ServiceFlags::WITNESS),
                address: [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001],
                port: 8333
            }),
            "The address is: Address {services: ServiceFlags(NETWORK|WITNESS), address: 10.0.0.1, port: 8333}"
        );

        assert_eq!(
            format!("The address is: {:?}", Address {
                services: ServiceFlags::NETWORK_LIMITED,
                address: [0xFD87, 0xD87E, 0xEB43, 0, 0, 0xffff, 0x0a00, 0x0001],
                port: 8333
            }),
            "The address is: Address {services: ServiceFlags(NETWORK_LIMITED), address: fd87:d87e:eb43::ffff:a00:1, port: 8333}"
        );
    }

    #[test]
    fn deserialize_address_test() {
        let mut addr: Result<Address, _> = deserialize(&[1u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                                       0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x0a, 0,
                                                       0, 1, 0x20, 0x8d]);
        assert!(addr.is_ok());
        let full = addr.unwrap();
        assert!(match full.socket_addr().unwrap() {
                    SocketAddr::V4(_) => true,
                    _ => false
                }
            );
        assert_eq!(full.services, ServiceFlags::NETWORK);
        assert_eq!(full.address, [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001]);
        assert_eq!(full.port, 8333);

        addr = deserialize(&[1u8, 0, 0, 0, 0, 0, 0, 0, 0,
                             0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x0a, 0, 0, 1]);
        assert!(addr.is_err());
    }

    #[test]
    fn test_socket_addr () {
        let s4 = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(111,222,123,4)), 5555);
        let a4 = Address::new(&s4, ServiceFlags::NETWORK | ServiceFlags::WITNESS);
        assert_eq!(a4.socket_addr().unwrap(), s4);
        let s6 = SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0x1111, 0x2222, 0x3333, 0x4444,
        0x5555, 0x6666, 0x7777, 0x8888)), 9999);
        let a6 = Address::new(&s6, ServiceFlags::NETWORK | ServiceFlags::WITNESS);
        assert_eq!(a6.socket_addr().unwrap(), s6);
    }

    #[test]
    fn onion_test () {
        let onionaddr = SocketAddr::new(
            IpAddr::V6(
            Ipv6Addr::from_str("FD87:D87E:EB43:edb1:8e4:3588:e546:35ca").unwrap()), 1111);
        let addr = Address::new(&onionaddr, ServiceFlags::NONE);
        assert!(addr.socket_addr().is_err());
    }

    #[test]
    fn serialize_addrv2_test() {
        // Taken from https://github.com/bitcoin/bitcoin/blob/12a1c3ad1a43634d2a98717e49e3f02c4acea2fe/src/test/net_tests.cpp#L348

        let ip = AddrV2::Ipv4(Ipv4Addr::new(1, 2, 3, 4));
        assert_eq!(serialize(&ip), Vec::from_hex("010401020304").unwrap());

        let ip = AddrV2::Ipv6(Ipv6Addr::from_str("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("02101a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b").unwrap());

        let ip = AddrV2::TorV2(FromHex::from_hex("f1f2f3f4f5f6f7f8f9fa").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("030af1f2f3f4f5f6f7f8f9fa").unwrap());

        let ip = AddrV2::TorV3(FromHex::from_hex("53cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("042053cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88").unwrap());

        let ip = AddrV2::I2p(FromHex::from_hex("a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("0520a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap());

        let ip = AddrV2::Cjdns(Ipv6Addr::from_str("fc00:1:2:3:4:5:6:7").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("0610fc000001000200030004000500060007").unwrap());

        let ip = AddrV2::Unknown(170, Vec::from_hex("01020304").unwrap());
        assert_eq!(serialize(&ip), Vec::from_hex("aa0401020304").unwrap());
    }

    #[test]
    fn deserialize_addrv2_test() {
        // Taken from https://github.com/bitcoin/bitcoin/blob/12a1c3ad1a43634d2a98717e49e3f02c4acea2fe/src/test/net_tests.cpp#L386

        // Valid IPv4.
        let ip: AddrV2 = deserialize(&Vec::from_hex("010401020304").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::Ipv4(Ipv4Addr::new(1, 2, 3, 4)));

        // Invalid IPv4, valid length but address itself is shorter.
        deserialize::<AddrV2>(&Vec::from_hex("01040102").unwrap()).unwrap_err();

        // Invalid IPv4, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("010501020304").unwrap()).is_err());

        // Invalid IPv4, with extreme length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("01fd010201020304").unwrap()).is_err());

        // Valid IPv6.
        let ip: AddrV2 = deserialize(&Vec::from_hex("02100102030405060708090a0b0c0d0e0f10").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::Ipv6(Ipv6Addr::from_str("102:304:506:708:90a:b0c:d0e:f10").unwrap()));

        // Invalid IPv6, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("020400").unwrap()).is_err());

        // Invalid IPv6, contains embedded IPv4.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("021000000000000000000000ffff01020304").unwrap()).is_err());

        // Invalid IPv6, contains embedded TORv2.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("0210fd87d87eeb430102030405060708090a").unwrap()).is_err());

        // Valid TORv2.
        let ip: AddrV2 = deserialize(&Vec::from_hex("030af1f2f3f4f5f6f7f8f9fa").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::TorV2(FromHex::from_hex("f1f2f3f4f5f6f7f8f9fa").unwrap()));

        // Invalid TORv2, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("030700").unwrap()).is_err());

        // Valid TORv3.
        let ip: AddrV2 = deserialize(&Vec::from_hex("042079bcc625184b05194975c28b66b66b0469f7f6556fb1ac3189a79b40dda32f1f").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::TorV3(FromHex::from_hex("79bcc625184b05194975c28b66b66b0469f7f6556fb1ac3189a79b40dda32f1f").unwrap()));

        // Invalid TORv3, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("040000").unwrap()).is_err());

        // Valid I2P.
        let ip: AddrV2 = deserialize(&Vec::from_hex("0520a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::I2p(FromHex::from_hex("a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap()));

        // Invalid I2P, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("050300").unwrap()).is_err());

        // Valid CJDNS.
        let ip: AddrV2 = deserialize(&Vec::from_hex("0610fc000001000200030004000500060007").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::Cjdns(Ipv6Addr::from_str("fc00:1:2:3:4:5:6:7").unwrap()));

        // Invalid CJDNS, incorrect marker
        assert!(deserialize::<AddrV2>(&Vec::from_hex("0610fd000001000200030004000500060007").unwrap()).is_err());

        // Invalid CJDNS, with bogus length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("060100").unwrap()).is_err());

        // Unknown, with extreme length.
        assert!(deserialize::<AddrV2>(&Vec::from_hex("aafe0000000201020304050607").unwrap()).is_err());

        // Unknown, with reasonable length.
        let ip: AddrV2 = deserialize(&Vec::from_hex("aa0401020304").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::Unknown(170, Vec::from_hex("01020304").unwrap()));

        // Unknown, with zero length.
        let ip: AddrV2 = deserialize(&Vec::from_hex("aa00").unwrap()).unwrap();
        assert_eq!(ip, AddrV2::Unknown(170, vec![]));
    }

    #[test]
    fn addrv2message_test() {
        let raw = Vec::from_hex("0261bc6649019902abab208d79627683fd4804010409090909208d").unwrap();
        let addresses: Vec<AddrV2Message> = deserialize(&raw).unwrap();

        assert_eq!(addresses, vec![
            AddrV2Message{services: ServiceFlags::NETWORK, time: 0x4966bc61, port: 8333, addr: AddrV2::Unknown(153, Vec::from_hex("abab").unwrap())},
            AddrV2Message{services: ServiceFlags::NETWORK_LIMITED | ServiceFlags::WITNESS | ServiceFlags::COMPACT_FILTERS, time: 0x83766279, port: 8333, addr: AddrV2::Ipv4(Ipv4Addr::new(9, 9, 9, 9))},
        ]);

        assert_eq!(serialize(&addresses), raw);
    }
}