1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Script
//!
//! Scripts define Bitcoin's digital signature scheme: a signature is formed
//! from a script (the second half of which is defined by a coin to be spent,
//! and the first half provided by the spending transaction), and is valid
//! iff the script leaves `TRUE` on the stack after being evaluated.
//! Bitcoin's script is a stack-based assembly language similar in spirit to
//! Forth.
//!
//! This module provides the structures and functions needed to support scripts.
//!

use std::default::Default;
use std::{error, fmt};

use crypto::digest::Digest;
#[cfg(feature = "serde")] use serde;

use blockdata::opcodes;
use consensus::encode::{Decodable, Encodable};
use consensus::encode::{self, Decoder, Encoder};
use util::hash::Hash160;
#[cfg(feature="bitcoinconsensus")] use bitcoinconsensus;
#[cfg(feature="bitcoinconsensus")] use std::convert;
#[cfg(feature="bitcoinconsensus")] use util::hash::Sha256dHash;

#[cfg(feature="fuzztarget")]      use fuzz_util::sha2::Sha256;
#[cfg(not(feature="fuzztarget"))] use crypto::sha2::Sha256;

#[derive(Clone, Default, PartialOrd, Ord, PartialEq, Eq, Hash)]
/// A Bitcoin script
pub struct Script(Box<[u8]>);

impl fmt::Debug for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut index = 0;

        f.write_str("Script(")?;
        while index < self.0.len() {
            let opcode = opcodes::All::from(self.0[index]);
            index += 1;

            let data_len = if let opcodes::Class::PushBytes(n) = opcode.classify() {
                n as usize
            } else {
                match opcode {
                    opcodes::all::OP_PUSHDATA1 => {
                        if self.0.len() < index + 1 {
                            f.write_str("<unexpected end>")?;
                            break;
                        }
                        match read_uint(&self.0[index..], 1) {
                            Ok(n) => { index += 1; n as usize }
                            Err(_) => { f.write_str("<bad length>")?; break; }
                        }
                    }
                    opcodes::all::OP_PUSHDATA2 => {
                        if self.0.len() < index + 2 {
                            f.write_str("<unexpected end>")?;
                            break;
                        }
                        match read_uint(&self.0[index..], 2) {
                            Ok(n) => { index += 2; n as usize }
                            Err(_) => { f.write_str("<bad length>")?; break; }
                        }
                    }
                    opcodes::all::OP_PUSHDATA4 => {
                        if self.0.len() < index + 4 {
                            f.write_str("<unexpected end>")?;
                            break;
                        }
                        match read_uint(&self.0[index..], 4) {
                            Ok(n) => { index += 4; n as usize }
                            Err(_) => { f.write_str("<bad length>")?; break; }
                        }
                    }
                    _ => 0
                }
            };

            if index > 1 { f.write_str(" ")?; }
            // Write the opcode
            if opcode == opcodes::all::OP_PUSHBYTES_0 {
                f.write_str("OP_0")?;
            } else {
                write!(f, "{:?}", opcode)?;
            }
            // Write any pushdata
            if data_len > 0 {
                f.write_str(" ")?;
                if index + data_len <= self.0.len() {
                    for ch in &self.0[index..index + data_len] {
                            write!(f, "{:02x}", ch)?;
                    }
                    index += data_len;
                } else {
                    f.write_str("<push past end>")?;
                    break;
                }
            }
        }
        f.write_str(")")
    }
}

impl fmt::Display for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

impl fmt::LowerHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for &ch in self.0.iter() {
            write!(f, "{:02x}", ch)?;
        }
        Ok(())
    }
}

impl fmt::UpperHex for Script {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for &ch in self.0.iter() {
            write!(f, "{:02X}", ch)?;
        }
        Ok(())
    }
}

#[derive(PartialEq, Eq, Debug, Clone)]
/// An object which can be used to construct a script piece by piece
pub struct Builder(Vec<u8>);
display_from_debug!(Builder);

/// Ways that a script might fail. Not everything is split up as
/// much as it could be; patches welcome if more detailed errors
/// would help you.
#[derive(PartialEq, Eq, Debug, Clone)]
pub enum Error {
    /// Something did a non-minimal push; for more information see
    /// `https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki#Push_operators`
    NonMinimalPush,
    /// Some opcode expected a parameter, but it was missing or truncated
    EarlyEndOfScript,
    /// Tried to read an array off the stack as a number when it was more than 4 bytes
    NumericOverflow,
    #[cfg(feature="bitcoinconsensus")]
    /// Error validating the script with bitcoinconsensus library
    BitcoinConsensus(bitcoinconsensus::Error),
    #[cfg(feature="bitcoinconsensus")]
    /// Can not find the spent transaction
    UnknownSpentTransaction(Sha256dHash),
    #[cfg(feature="bitcoinconsensus")]
    /// The spent transaction does not have the referred output
    WrongSpentOutputIndex(usize),
    #[cfg(feature="bitcoinconsensus")]
    /// Can not serialize the spending transaction
    SerializationError
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(error::Error::description(self))
    }
}

impl error::Error for Error {
    fn cause(&self) -> Option<&error::Error> { None }

    fn description(&self) -> &'static str {
        match *self {
            Error::NonMinimalPush => "non-minimal datapush",
            Error::EarlyEndOfScript => "unexpected end of script",
            Error::NumericOverflow => "numeric overflow (number on stack larger than 4 bytes)",
            #[cfg(feature="bitcoinconsensus")]
            Error::BitcoinConsensus(ref _n) => "bitcoinconsensus verification failed",
            #[cfg(feature="bitcoinconsensus")]
            Error::UnknownSpentTransaction (ref _hash) => "unknown transaction referred in Transaction::verify()",
            #[cfg(feature="bitcoinconsensus")]
            Error::WrongSpentOutputIndex(ref _ix) => "unknown output index {} referred in Transaction::verify()",
            #[cfg(feature="bitcoinconsensus")]
            Error::SerializationError => "can not serialize the spending transaction in Transaction::verify()",
        }
    }
}

#[cfg(feature="bitcoinconsensus")]
#[doc(hidden)]
impl convert::From<bitcoinconsensus::Error> for Error {
    fn from(err: bitcoinconsensus::Error) -> Error {
        match err {
            _ => Error::BitcoinConsensus(err)
        }
    }
}
/// Helper to encode an integer in script format
fn build_scriptint(n: i64) -> Vec<u8> {
    if n == 0 { return vec![] }

    let neg = n < 0;

    let mut abs = if neg { -n } else { n } as usize;
    let mut v = vec![];
    while abs > 0xFF {
        v.push((abs & 0xFF) as u8);
        abs >>= 8;
    }
    // If the number's value causes the sign bit to be set, we need an extra
    // byte to get the correct value and correct sign bit
    if abs & 0x80 != 0 {
        v.push(abs as u8);
        v.push(if neg { 0x80u8 } else { 0u8 });
    }
    // Otherwise we just set the sign bit ourselves
    else {
        abs |= if neg { 0x80 } else { 0 };
        v.push(abs as u8);
    }
    v
}

/// Helper to decode an integer in script format
/// Notice that this fails on overflow: the result is the same as in
/// bitcoind, that only 4-byte signed-magnitude values may be read as
/// numbers. They can be added or subtracted (and a long time ago,
/// multiplied and divided), and this may result in numbers which
/// can't be written out in 4 bytes or less. This is ok! The number
/// just can't be read as a number again.
/// This is a bit crazy and subtle, but it makes sense: you can load
/// 32-bit numbers and do anything with them, which back when mult/div
/// was allowed, could result in up to a 64-bit number. We don't want
/// overflow since that's suprising --- and we don't want numbers that
/// don't fit in 64 bits (for efficiency on modern processors) so we
/// simply say, anything in excess of 32 bits is no longer a number.
/// This is basically a ranged type implementation.
pub fn read_scriptint(v: &[u8]) -> Result<i64, Error> {
    let len = v.len();
    if len == 0 { return Ok(0); }
    if len > 4 { return Err(Error::NumericOverflow); }

    let (mut ret, sh) = v.iter()
                         .fold((0, 0), |(acc, sh), n| (acc + ((*n as i64) << sh), sh + 8));
    if v[len - 1] & 0x80 != 0 {
        ret &= (1 << (sh - 1)) - 1;
        ret = -ret;
    }
    Ok(ret)
}

/// This is like "`read_scriptint` then map 0 to false and everything
/// else as true", except that the overflow rules don't apply.
#[inline]
pub fn read_scriptbool(v: &[u8]) -> bool {
    !(v.is_empty() ||
        ((v[v.len() - 1] == 0 || v[v.len() - 1] == 0x80) &&
         v.iter().rev().skip(1).all(|&w| w == 0)))
}

/// Read a script-encoded unsigned integer
pub fn read_uint(data: &[u8], size: usize) -> Result<usize, Error> {
    if data.len() < size {
        Err(Error::EarlyEndOfScript)
    } else {
        let mut ret = 0;
        for (i, item) in data.iter().take(size).enumerate() {
            ret += (*item as usize) << (i * 8);
        }
        Ok(ret)
    }
}

impl Script {
    /// Creates a new empty script
    pub fn new() -> Script { Script(vec![].into_boxed_slice()) }

    /// The length in bytes of the script
    pub fn len(&self) -> usize { self.0.len() }

    /// Whether the script is the empty script
    pub fn is_empty(&self) -> bool { self.0.is_empty() }

    /// Returns the script data
    pub fn as_bytes(&self) -> &[u8] { &*self.0 }

    /// Returns a copy of the script data
    pub fn to_bytes(&self) -> Vec<u8> { self.0.clone().into_vec() }

    /// Convert the script into a byte vector
    pub fn into_bytes(self) -> Vec<u8> { self.0.into_vec() }

    /// Compute the P2SH output corresponding to this redeem script
    pub fn to_p2sh(&self) -> Script {
        Builder::new().push_opcode(opcodes::all::OP_HASH160)
                      .push_slice(&Hash160::from_data(&self.0)[..])
                      .push_opcode(opcodes::all::OP_EQUAL)
                      .into_script()
    }

    /// Compute the P2WSH output corresponding to this witnessScript (aka the "witness redeem
    /// script")
    pub fn to_v0_p2wsh(&self) -> Script {
        let mut tmp = [0; 32];
        let mut sha2 = Sha256::new();
        sha2.input(&self.0);
        sha2.result(&mut tmp);
        Builder::new().push_int(0)
                      .push_slice(&tmp)
                      .into_script()
    }

    /// Checks whether a script pubkey is a p2sh output
    #[inline]
    pub fn is_p2sh(&self) -> bool {
        self.0.len() == 23 &&
        self.0[0] == opcodes::all::OP_HASH160.into_u8() &&
        self.0[1] == opcodes::all::OP_PUSHBYTES_20.into_u8() &&
        self.0[22] == opcodes::all::OP_EQUAL.into_u8()
    }

    /// Checks whether a script pubkey is a p2pkh output
    #[inline]
    pub fn is_p2pkh(&self) -> bool {
        self.0.len() == 25 &&
        self.0[0] == opcodes::all::OP_DUP.into_u8() &&
        self.0[1] == opcodes::all::OP_HASH160.into_u8() &&
        self.0[2] == opcodes::all::OP_PUSHBYTES_20.into_u8() &&
        self.0[23] == opcodes::all::OP_EQUALVERIFY.into_u8() &&
        self.0[24] == opcodes::all::OP_CHECKSIG.into_u8()
    }

    /// Checks whether a script pubkey is a p2pkh output
    #[inline]
    pub fn is_p2pk(&self) -> bool {
        (self.0.len() == 67 &&
            self.0[0] == opcodes::all::OP_PUSHBYTES_65.into_u8() &&
            self.0[66] == opcodes::all::OP_CHECKSIG.into_u8())
     || (self.0.len() == 35 &&
            self.0[0] == opcodes::all::OP_PUSHBYTES_33.into_u8() &&
            self.0[34] == opcodes::all::OP_CHECKSIG.into_u8())
    }

    /// Checks whether a script pubkey is a p2wsh output
    #[inline]
    pub fn is_v0_p2wsh(&self) -> bool {
        self.0.len() == 34 &&
        self.0[0] == opcodes::all::OP_PUSHBYTES_0.into_u8() &&
        self.0[1] == opcodes::all::OP_PUSHBYTES_32.into_u8()
    }

    /// Checks whether a script pubkey is a p2wpkh output
    #[inline]
    pub fn is_v0_p2wpkh(&self) -> bool {
        self.0.len() == 22 &&
            self.0[0] == opcodes::all::OP_PUSHBYTES_0.into_u8() &&
            self.0[1] == opcodes::all::OP_PUSHBYTES_20.into_u8()
    }

    /// Check if this is an OP_RETURN output
    pub fn is_op_return (&self) -> bool {
        !self.0.is_empty() && (opcodes::All::from(self.0[0]) == opcodes::all::OP_RETURN)
    }

    /// Whether a script can be proven to have no satisfying input
    pub fn is_provably_unspendable(&self) -> bool {
        !self.0.is_empty() && (opcodes::All::from(self.0[0]).classify() == opcodes::Class::ReturnOp ||
                               opcodes::All::from(self.0[0]).classify() == opcodes::Class::IllegalOp)
    }

    /// Iterate over the script in the form of `Instruction`s, which are an enum covering
    /// opcodes, datapushes and errors. At most one error will be returned and then the
    /// iterator will end. To instead iterate over the script as sequence of bytes, treat
    /// it as a slice using `script[..]` or convert it to a vector using `into_bytes()`.
    pub fn iter(&self, enforce_minimal: bool) -> Instructions {
        Instructions {
            data: &self.0[..],
            enforce_minimal: enforce_minimal,
        }
    }

    #[cfg(feature="bitcoinconsensus")]
    /// verify spend of an input script
    /// # Parameters
    ///  * index - the input index in spending which is spending this transaction
    ///  * amount - the amount this script guards
    ///  * spending - the transaction that attempts to spend the output holding this script
    pub fn verify (&self, index: usize, amount: u64, spending: &[u8]) -> Result<(), Error> {
        Ok(bitcoinconsensus::verify (&self.0[..], amount, spending, index)?)
    }
}

/// Creates a new script from an existing vector
impl From<Vec<u8>> for Script {
    fn from(v: Vec<u8>) -> Script { Script(v.into_boxed_slice()) }
}

impl_index_newtype!(Script, u8);

/// A "parsed opcode" which allows iterating over a Script in a more sensible way
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Instruction<'a> {
    /// Push a bunch of data
    PushBytes(&'a [u8]),
    /// Some non-push opcode
    Op(opcodes::All),
    /// An opcode we were unable to parse
    Error(Error)
}

/// Iterator over a script returning parsed opcodes
pub struct Instructions<'a> {
    data: &'a [u8],
    enforce_minimal: bool,
}

impl<'a> Iterator for Instructions<'a> {
    type Item = Instruction<'a>;

    fn next(&mut self) -> Option<Instruction<'a>> {
        if self.data.is_empty() {
            return None;
        }

        match opcodes::All::from(self.data[0]).classify() {
            opcodes::Class::PushBytes(n) => {
                let n = n as usize;
                if self.data.len() < n + 1 {
                    self.data = &[];  // Kill iterator so that it does not return an infinite stream of errors
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                if self.enforce_minimal {
                    if n == 1 && (self.data[1] == 0x81 || (self.data[1] > 0 && self.data[1] <= 16)) {
                        self.data = &[];
                        return Some(Instruction::Error(Error::NonMinimalPush));
                    }
                }
                let ret = Some(Instruction::PushBytes(&self.data[1..n+1]));
                self.data = &self.data[n + 1..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA1) => {
                if self.data.len() < 2 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let n = match read_uint(&self.data[1..], 1) {
                    Ok(n) => n,
                    Err(e) => {
                        self.data = &[];
                        return Some(Instruction::Error(e));
                    }
                };
                if self.data.len() < n + 2 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                if self.enforce_minimal && n < 76 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::NonMinimalPush));
                }
                let ret = Some(Instruction::PushBytes(&self.data[2..n+2]));
                self.data = &self.data[n + 2..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA2) => {
                if self.data.len() < 3 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let n = match read_uint(&self.data[1..], 2) {
                    Ok(n) => n,
                    Err(e) => {
                        self.data = &[];
                        return Some(Instruction::Error(e));
                    }
                };
                if self.enforce_minimal && n < 0x100 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::NonMinimalPush));
                }
                if self.data.len() < n + 3 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let ret = Some(Instruction::PushBytes(&self.data[3..n + 3]));
                self.data = &self.data[n + 3..];
                ret
            }
            opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA4) => {
                if self.data.len() < 5 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let n = match read_uint(&self.data[1..], 4) {
                    Ok(n) => n,
                    Err(e) => {
                        self.data = &[];
                        return Some(Instruction::Error(e));
                    }
                };
                if self.enforce_minimal && n < 0x10000 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::NonMinimalPush));
                }
                if self.data.len() < n + 5 {
                    self.data = &[];
                    return Some(Instruction::Error(Error::EarlyEndOfScript));
                }
                let ret = Some(Instruction::PushBytes(&self.data[5..n + 5]));
                self.data = &self.data[n + 5..];
                ret
            }
            // Everything else we can push right through
            _ => {
                let ret = Some(Instruction::Op(opcodes::All::from(self.data[0])));
                self.data = &self.data[1..];
                ret
            }
        }
    }
}

impl Builder {
    /// Creates a new empty script
    pub fn new() -> Builder { Builder(vec![]) }

    /// The length in bytes of the script
    pub fn len(&self) -> usize { self.0.len() }

    /// Whether the script is the empty script
    pub fn is_empty(&self) -> bool { self.0.is_empty() }

    /// Adds instructions to push an integer onto the stack. Integers are
    /// encoded as little-endian signed-magnitude numbers, but there are
    /// dedicated opcodes to push some small integers.
    pub fn push_int(mut self, data: i64) -> Builder {
        // We can special-case -1, 1-16
        if data == -1 || (data >= 1 && data <= 16) {
            self.0.push((data - 1 + opcodes::OP_TRUE.into_u8() as i64) as u8);
            self
        }
        // We can also special-case zero
        else if data == 0 {
            self.0.push(opcodes::OP_FALSE.into_u8());
            self
        }
        // Otherwise encode it as data
        else { self.push_scriptint(data) }
    }

    /// Adds instructions to push an integer onto the stack, using the explicit
    /// encoding regardless of the availability of dedicated opcodes.
    pub fn push_scriptint(self, data: i64) -> Builder {
        self.push_slice(&build_scriptint(data))
    }

    /// Adds instructions to push some arbitrary data onto the stack
    pub fn push_slice(mut self, data: &[u8]) -> Builder {
        // Start with a PUSH opcode
        match data.len() as u64 {
            n if n < opcodes::Ordinary::OP_PUSHDATA1 as u64 => { self.0.push(n as u8); },
            n if n < 0x100 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA1.into_u8());
                self.0.push(n as u8);
            },
            n if n < 0x10000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA2.into_u8());
                self.0.push((n % 0x100) as u8);
                self.0.push((n / 0x100) as u8);
            },
            n if n < 0x100000000 => {
                self.0.push(opcodes::Ordinary::OP_PUSHDATA4.into_u8());
                self.0.push((n % 0x100) as u8);
                self.0.push(((n / 0x100) % 0x100) as u8);
                self.0.push(((n / 0x10000) % 0x100) as u8);
                self.0.push((n / 0x1000000) as u8);
            }
            _ => panic!("tried to put a 4bn+ sized object into a script!")
        }
        // Then push the acraw
        self.0.extend(data.iter().cloned());
        self
    }

    /// Adds a single opcode to the script
    pub fn push_opcode(mut self, data: opcodes::All) -> Builder {
        self.0.push(data.into_u8());
        self
    }

    /// Converts the `Builder` into an unmodifiable `Script`
    pub fn into_script(self) -> Script {
        Script(self.0.into_boxed_slice())
    }
}

/// Adds an individual opcode to the script
impl Default for Builder {
    fn default() -> Builder { Builder(vec![]) }
}

/// Creates a new script from an existing vector
impl From<Vec<u8>> for Builder {
    fn from(v: Vec<u8>) -> Builder { Builder(v) }
}

impl_index_newtype!(Builder, u8);

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Script {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        use std::fmt::{self, Formatter};

        struct Visitor;
        impl<'de> serde::de::Visitor<'de> for Visitor {
            type Value = Script;

            fn expecting(&self, formatter: &mut Formatter) -> fmt::Result {
                formatter.write_str("a script")
            }

            fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
            where
                E: serde::de::Error,
            {
                let v: Vec<u8> = ::hex::decode(v).map_err(E::custom)?;
                Ok(Script::from(v))
            }

            fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
            where
                E: serde::de::Error,
            {
                self.visit_str(v)
            }

            fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
            where
                E: serde::de::Error,
            {
                self.visit_str(&v)
            }
        }

        deserializer.deserialize_str(Visitor)
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for Script {
    /// User-facing serialization for `Script`.
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        serializer.serialize_str(&format!("{:x}", self))
    }
}

// Network serialization
impl<S: Encoder> Encodable<S> for Script {
    #[inline]
    fn consensus_encode(&self, s: &mut S) -> Result<(), encode::Error> {
        self.0.consensus_encode(s)
    }
}

impl<D: Decoder> Decodable<D> for Script {
    #[inline]
    fn consensus_decode(d: &mut D) -> Result<Script, encode::Error> {
        Ok(Script(Decodable::consensus_decode(d)?))
    }
}

#[cfg(test)]
mod test {
    use hex::decode as hex_decode;

    use super::*;
    use super::build_scriptint;

    use consensus::encode::{deserialize, serialize};
    use blockdata::opcodes;

    #[test]
    fn script() {
        let mut comp = vec![];
        let mut script = Builder::new();
        assert_eq!(&script[..], &comp[..]);

        // small ints
        script = script.push_int(1);  comp.push(81u8); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(0);  comp.push(0u8);  assert_eq!(&script[..], &comp[..]);
        script = script.push_int(4);  comp.push(84u8); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(-1); comp.push(79u8); assert_eq!(&script[..], &comp[..]);
        // forced scriptint
        script = script.push_scriptint(4); comp.extend([1u8, 4].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        // big ints
        script = script.push_int(17); comp.extend([1u8, 17].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(10000); comp.extend([2u8, 16, 39].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        // notice the sign bit set here, hence the extra zero/128 at the end
        script = script.push_int(10000000); comp.extend([4u8, 128, 150, 152, 0].iter().cloned()); assert_eq!(&script[..], &comp[..]);
        script = script.push_int(-10000000); comp.extend([4u8, 128, 150, 152, 128].iter().cloned()); assert_eq!(&script[..], &comp[..]);

        // data
        script = script.push_slice("NRA4VR".as_bytes()); comp.extend([6u8, 78, 82, 65, 52, 86, 82].iter().cloned()); assert_eq!(&script[..], &comp[..]);

        // opcodes
        script = script.push_opcode(opcodes::all::OP_CHECKSIG); comp.push(0xACu8); assert_eq!(&script[..], &comp[..]);
        script = script.push_opcode(opcodes::all::OP_CHECKSIG); comp.push(0xACu8); assert_eq!(&script[..], &comp[..]);
    }

    #[test]
    fn script_builder() {
        // from txid 3bb5e6434c11fb93f64574af5d116736510717f2c595eb45b52c28e31622dfff which was in my mempool when I wrote the test
        let script = Builder::new().push_opcode(opcodes::all::OP_DUP)
                                   .push_opcode(opcodes::all::OP_HASH160)
                                   .push_slice(&hex_decode("16e1ae70ff0fa102905d4af297f6912bda6cce19").unwrap())
                                   .push_opcode(opcodes::all::OP_EQUALVERIFY)
                                   .push_opcode(opcodes::all::OP_CHECKSIG)
                                   .into_script();
        assert_eq!(&format!("{:x}", script), "76a91416e1ae70ff0fa102905d4af297f6912bda6cce1988ac");
    }

    #[test]
    fn script_serialize() {
        let hex_script = hex_decode("6c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52").unwrap();
        let script: Result<Script, _> = deserialize(&hex_script);
        assert!(script.is_ok());
        assert_eq!(serialize(&script.unwrap()), hex_script);
    }

    #[test]
    fn scriptint_round_trip() {
        assert_eq!(build_scriptint(-1), vec![0x81]);
        assert_eq!(build_scriptint(255), vec![255, 0]);
        assert_eq!(build_scriptint(256), vec![0, 1]);
        assert_eq!(build_scriptint(257), vec![1, 1]);
        assert_eq!(build_scriptint(511), vec![255, 1]);
        for &i in [10, 100, 255, 256, 1000, 10000, 25000, 200000, 5000000, 1000000000,
                             (1 << 31) - 1, -((1 << 31) - 1)].iter() {
            assert_eq!(Ok(i), read_scriptint(&build_scriptint(i)));
            assert_eq!(Ok(-i), read_scriptint(&build_scriptint(-i)));
        }
        assert!(read_scriptint(&build_scriptint(1 << 31)).is_err());
        assert!(read_scriptint(&build_scriptint(-(1 << 31))).is_err());
    }

    #[test]
    fn provably_unspendable_test() {
        // p2pk
        assert_eq!(hex_script!("410446ef0102d1ec5240f0d061a4246c1bdef63fc3dbab7733052fbbf0ecd8f41fc26bf049ebb4f9527f374280259e7cfa99c48b0e3f39c51347a19a5819651503a5ac").is_provably_unspendable(), false);
        assert_eq!(hex_script!("4104ea1feff861b51fe3f5f8a3b12d0f4712db80e919548a80839fc47c6a21e66d957e9c5d8cd108c7a2d2324bad71f9904ac0ae7336507d785b17a2c115e427a32fac").is_provably_unspendable(), false);
        // p2pkhash
        assert_eq!(hex_script!("76a914ee61d57ab51b9d212335b1dba62794ac20d2bcf988ac").is_provably_unspendable(), false);
        assert_eq!(hex_script!("6aa9149eb21980dc9d413d8eac27314938b9da920ee53e87").is_provably_unspendable(), true);
    }

    #[test]
    fn op_return_test() {
        assert_eq!(hex_script!("6aa9149eb21980dc9d413d8eac27314938b9da920ee53e87").is_op_return(), true);
        assert_eq!(hex_script!("76a914ee61d57ab51b9d212335b1dba62794ac20d2bcf988ac").is_op_return(), false);
        assert_eq!(hex_script!("").is_op_return(), false);
    }

    #[test]
    #[cfg(all(feature = "serde", feature = "strason"))]
    fn script_json_serialize() {
        use strason::Json;

        let original = hex_script!("827651a0698faaa9a8a7a687");
        let json = Json::from_serialize(&original).unwrap();
        assert_eq!(json.to_bytes(), b"\"827651a0698faaa9a8a7a687\"");
        assert_eq!(json.string(), Some("827651a0698faaa9a8a7a687"));
        let des = json.into_deserialize().unwrap();
        assert_eq!(original, des);
    }

    #[test]
    fn script_debug_display() {
        assert_eq!(format!("{:?}", hex_script!("6363636363686868686800")),
                   "Script(OP_IF OP_IF OP_IF OP_IF OP_IF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_0)");
        assert_eq!(format!("{}", hex_script!("6363636363686868686800")),
                   "Script(OP_IF OP_IF OP_IF OP_IF OP_IF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_ENDIF OP_0)");
        assert_eq!(format!("{}", hex_script!("2102715e91d37d239dea832f1460e91e368115d8ca6cc23a7da966795abad9e3b699ac")),
                   "Script(OP_PUSHBYTES_33 02715e91d37d239dea832f1460e91e368115d8ca6cc23a7da966795abad9e3b699 OP_CHECKSIG)");
        // Elements Alpha peg-out transaction with some signatures removed for brevity. Mainly to test PUSHDATA1
        assert_eq!(format!("{}", hex_script!("0047304402202457e78cc1b7f50d0543863c27de75d07982bde8359b9e3316adec0aec165f2f02200203fd331c4e4a4a02f48cf1c291e2c0d6b2f7078a784b5b3649fca41f8794d401004cf1552103244e602b46755f24327142a0517288cebd159eccb6ccf41ea6edf1f601e9af952103bbbacc302d19d29dbfa62d23f37944ae19853cf260c745c2bea739c95328fcb721039227e83246bd51140fe93538b2301c9048be82ef2fb3c7fc5d78426ed6f609ad210229bf310c379b90033e2ecb07f77ecf9b8d59acb623ab7be25a0caed539e2e6472103703e2ed676936f10b3ce9149fa2d4a32060fb86fa9a70a4efe3f21d7ab90611921031e9b7c6022400a6bb0424bbcde14cff6c016b91ee3803926f3440abf5c146d05210334667f975f55a8455d515a2ef1c94fdfa3315f12319a14515d2a13d82831f62f57ae")),
                   "Script(OP_0 OP_PUSHBYTES_71 304402202457e78cc1b7f50d0543863c27de75d07982bde8359b9e3316adec0aec165f2f02200203fd331c4e4a4a02f48cf1c291e2c0d6b2f7078a784b5b3649fca41f8794d401 OP_0 OP_PUSHDATA1 552103244e602b46755f24327142a0517288cebd159eccb6ccf41ea6edf1f601e9af952103bbbacc302d19d29dbfa62d23f37944ae19853cf260c745c2bea739c95328fcb721039227e83246bd51140fe93538b2301c9048be82ef2fb3c7fc5d78426ed6f609ad210229bf310c379b90033e2ecb07f77ecf9b8d59acb623ab7be25a0caed539e2e6472103703e2ed676936f10b3ce9149fa2d4a32060fb86fa9a70a4efe3f21d7ab90611921031e9b7c6022400a6bb0424bbcde14cff6c016b91ee3803926f3440abf5c146d05210334667f975f55a8455d515a2ef1c94fdfa3315f12319a14515d2a13d82831f62f57ae)");
    }

    #[test]
    fn script_p2sh_p2p2k_template() {
        // random outputs I picked out of the mempool
        assert!(hex_script!("76a91402306a7c23f3e8010de41e9e591348bb83f11daa88ac").is_p2pkh());
        assert!(!hex_script!("76a91402306a7c23f3e8010de41e9e591348bb83f11daa88ac").is_p2sh());
        assert!(!hex_script!("76a91402306a7c23f3e8010de41e9e591348bb83f11daa88ad").is_p2pkh());
        assert!(!hex_script!("").is_p2pkh());
        assert!(hex_script!("a914acc91e6fef5c7f24e5c8b3f11a664aa8f1352ffd87").is_p2sh());
        assert!(!hex_script!("a914acc91e6fef5c7f24e5c8b3f11a664aa8f1352ffd87").is_p2pkh());
        assert!(!hex_script!("a314acc91e6fef5c7f24e5c8b3f11a664aa8f1352ffd87").is_p2sh());
    }

    #[test]
    fn script_p2pk() {
        assert!(hex_script!("21021aeaf2f8638a129a3156fbe7e5ef635226b0bafd495ff03afe2c843d7e3a4b51ac").is_p2pk());
        assert!(hex_script!("410496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e62294721166bf621e73a82cbf2342c858eeac").is_p2pk());
    }

    #[test]
    fn p2sh_p2wsh_conversion() {
        // Test vectors taken from Core tests/data/script_tests.json
        // bare p2wsh
        let redeem_script = hex_script!("410479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8ac");
        let expected_witout = hex_script!("0020b95237b48faaa69eb078e1170be3b5cbb3fddf16d0a991e14ad274f7b33a4f64");
        assert!(redeem_script.to_v0_p2wsh().is_v0_p2wsh());
        assert_eq!(redeem_script.to_v0_p2wsh(), expected_witout);

        // p2sh
        let redeem_script = hex_script!("0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8");
        let expected_p2shout = hex_script!("a91491b24bf9f5288532960ac687abb035127b1d28a587");
        assert!(redeem_script.to_p2sh().is_p2sh());
        assert_eq!(redeem_script.to_p2sh(), expected_p2shout);

        // p2sh-p2wsh
        let redeem_script = hex_script!("410479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8ac");
        let expected_witout = hex_script!("0020b95237b48faaa69eb078e1170be3b5cbb3fddf16d0a991e14ad274f7b33a4f64");
        let expected_out = hex_script!("a914f386c2ba255cc56d20cfa6ea8b062f8b5994551887");
        assert!(redeem_script.to_p2sh().is_p2sh());
        assert!(redeem_script.to_p2sh().to_v0_p2wsh().is_v0_p2wsh());
        assert_eq!(redeem_script.to_v0_p2wsh(), expected_witout);
        assert_eq!(redeem_script.to_v0_p2wsh().to_p2sh(), expected_out);
    }

    #[test]
    fn test_iterator() {
        let zero = hex_script!("00");
        let zeropush = hex_script!("0100");

        let nonminimal = hex_script!("4c0169b2");      // PUSHDATA1 for no reason
        let minimal = hex_script!("0169b2");           // minimal
        let nonminimal_alt = hex_script!("026900b2");  // non-minimal number but minimal push (should be OK)

        let v_zero: Vec<Instruction> = zero.iter(true).collect();
        let v_zeropush: Vec<Instruction> = zeropush.iter(true).collect();

        let v_min: Vec<Instruction> = minimal.iter(true).collect();
        let v_nonmin: Vec<Instruction> = nonminimal.iter(true).collect();
        let v_nonmin_alt: Vec<Instruction> = nonminimal_alt.iter(true).collect();
        let slop_v_min: Vec<Instruction> = minimal.iter(false).collect();
        let slop_v_nonmin: Vec<Instruction> = nonminimal.iter(false).collect();
        let slop_v_nonmin_alt: Vec<Instruction> = nonminimal_alt.iter(false).collect();

        assert_eq!(
            v_zero,
            vec![
                Instruction::PushBytes(&[]),
            ]
        );
        assert_eq!(
            v_zeropush,
            vec![
                Instruction::PushBytes(&[0]),
            ]
        );

        assert_eq!(
            v_min,
            vec![
                Instruction::PushBytes(&[105]),
                Instruction::Op(opcodes::all::OP_NOP3),
            ]
        );

        assert_eq!(
            v_nonmin,
            vec![
                Instruction::Error(Error::NonMinimalPush),
            ]
        );

        assert_eq!(
            v_nonmin_alt,
            vec![
                Instruction::PushBytes(&[105, 0]),
                Instruction::Op(opcodes::all::OP_NOP3),
            ]
        );

        assert_eq!(v_min, slop_v_min);
        assert_eq!(v_min, slop_v_nonmin);
        assert_eq!(v_nonmin_alt, slop_v_nonmin_alt);
    }

	#[test]
    fn script_ord() {
        let script_1 = Builder::new().push_slice(&[1,2,3,4]).into_script();
        let script_2 = Builder::new().push_int(10).into_script();
        let script_3 = Builder::new().push_int(15).into_script();
        let script_4 = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();

        assert!(script_1 < script_2);
        assert!(script_2 < script_3);
        assert!(script_3 < script_4);

        assert!(script_1 <= script_1);
        assert!(script_1 >= script_1);

        assert!(script_4 > script_3);
        assert!(script_3 > script_2);
        assert!(script_2 > script_1);
    }

	#[test]
	#[cfg(feature="bitcoinconsensus")]
	fn test_bitcoinconsensus () {
		// a random segwit transaction from the blockchain using native segwit
		let spent = Builder::from(hex_decode("0020701a8d401c84fb13e6baf169d59684e17abd9fa216c8cc5b9fc63d622ff8c58d").unwrap()).into_script();
		let spending = hex_decode("010000000001011f97548fbbe7a0db7588a66e18d803d0089315aa7d4cc28360b6ec50ef36718a0100000000ffffffff02df1776000000000017a9146c002a686959067f4866b8fb493ad7970290ab728757d29f0000000000220020701a8d401c84fb13e6baf169d59684e17abd9fa216c8cc5b9fc63d622ff8c58d04004730440220565d170eed95ff95027a69b313758450ba84a01224e1f7f130dda46e94d13f8602207bdd20e307f062594022f12ed5017bbf4a055a06aea91c10110a0e3bb23117fc014730440220647d2dc5b15f60bc37dc42618a370b2a1490293f9e5c8464f53ec4fe1dfe067302203598773895b4b16d37485cbe21b337f4e4b650739880098c592553add7dd4355016952210375e00eb72e29da82b89367947f29ef34afb75e8654f6ea368e0acdfd92976b7c2103a1b26313f430c4b15bb1fdce663207659d8cac749a0e53d70eff01874496feff2103c96d495bfdd5ba4145e3e046fee45e84a8a48ad05bd8dbb395c011a32cf9f88053ae00000000").unwrap();
		spent.verify(0, 18393430, spending.as_slice()).unwrap();
	}
}