1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
crate::ix!();



//-------------------------------------------[.cpp/bitcoin/src/test/versionbits_tests.cpp]

/**
  | Define a virtual block time, one block
  | per 10 minutes after Nov 14 2014, 0:55:36am
  |
  */
pub fn test_time(n_height: i32) -> i32 {
    
    todo!();
        /*
            return 1415926536 + 600 * nHeight;
        */
}

pub fn state_name(state: ThresholdState) -> String {
    
    todo!();
        /*
            switch (state) {
        case ThresholdState::DEFINED:   return "DEFINED";
        case ThresholdState::STARTED:   return "STARTED";
        case ThresholdState::LOCKED_IN: return "LOCKED_IN";
        case ThresholdState::ACTIVE:    return "ACTIVE";
        case ThresholdState::FAILED:    return "FAILED";
        } // no default case, so the compiler can warn about missing cases
        return "";
        */
}

lazy_static!{
    static ref PARAMS_DUMMY: ChainConsensusParams = ChainConsensusParams::default();
}

pub struct TestConditionChecker {
    cache: RefCell<ThresholdConditionCache>,
}

impl abstract_threshold_condition_checker::Interface for TestConditionChecker { }

impl abstract_threshold_condition_checker::MinActivationHeight for TestConditionChecker { }

impl abstract_threshold_condition_checker::BeginTime for TestConditionChecker {

    fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
        
        todo!();
        /*
            return TestTime(10000);
        */
    }
}
    
impl abstract_threshold_condition_checker::EndTime for TestConditionChecker {
    fn end_time(&self, params: &ChainConsensusParams) -> i64 {
        
        todo!();
        /*
            return TestTime(20000);
        */
    }
}
    
impl abstract_threshold_condition_checker::Period for TestConditionChecker {
    fn period(&self, params: &ChainConsensusParams) -> i32 {
        
        todo!();
        /*
            return 1000;
        */
    }
}
    
impl abstract_threshold_condition_checker::Threshold for TestConditionChecker {
    fn threshold(&self, params: &ChainConsensusParams) -> i32 {
        
        todo!();
        /*
            return 900;
        */
    }
}
    
impl abstract_threshold_condition_checker::Condition for TestConditionChecker {
    fn condition(&self, 
        pindex: *const BlockIndex,
        params: &ChainConsensusParams) -> bool {
        
        todo!();
        /*
            return (pindex->nVersion & 0x100);
        */
    }
}
    
impl TestConditionChecker {

    fn get_state_for(&self, pindex_prev: *const BlockIndex) -> ThresholdState {
        
        todo!();
        /*
            return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache);
        */
    }

    fn get_state_since_height_for(&self, pindex_prev: *const BlockIndex) -> i32 {
        
        todo!();
        /*
            return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache);
        */
    }
}

///------------------------
pub struct TestDelayedActivationConditionChecker {
    base: TestConditionChecker,
}

impl abstract_threshold_condition_checker::MinActivationHeight for TestDelayedActivationConditionChecker {
    
    fn min_activation_height(&self, params: &ChainConsensusParams) -> i32 {
        
        todo!();
        /*
            return 15000;
        */
    }
}

///------------------------
pub struct TestAlwaysActiveConditionChecker {
    base: TestConditionChecker,
}

impl TestAlwaysActiveConditionChecker {
    
    pub fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
        
        todo!();
        /*
            return consensus::BIP9Deployment::ALWAYS_ACTIVE;
        */
    }
}

///------------------------
pub struct TestNeverActiveConditionChecker {
    base: TestConditionChecker,
}

impl TestNeverActiveConditionChecker {

    pub fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
        
        todo!();
        /*
            return consensus::BIP9Deployment::NEVER_ACTIVE;
        */
    }
}

pub const CHECKERS: usize = 6;

///------------------------
pub struct VersionBitsTester {

    /**
      | A fake blockchain
      |
      */
    vpblock:         Vec<*mut BlockIndex>,

    /**
      | 6 independent checkers for the same
      | bit.
      | 
      | The first one performs all checks, the
      | second only 50%, the third only 25%,
      | etc...
      | 
      | This is to test whether lack of cached
      | information leads to the same results.
      |
      */
    checker:         [TestConditionChecker; CHECKERS],

    /**
      | Another 6 that assume delayed activation
      |
      */
    checker_delayed: [TestDelayedActivationConditionChecker; CHECKERS],

    /**
      | Another 6 that assume always active
      | activation
      |
      */
    checker_always:  [TestAlwaysActiveConditionChecker; CHECKERS],

    /**
      | Another 6 that assume never active activation
      |
      */
    checker_never:   [TestNeverActiveConditionChecker; CHECKERS],

    /**
      | Test counter (to identify failures)
      |
      */
    num:             i32, // default = { 1000 }
}

impl Drop for VersionBitsTester {
    fn drop(&mut self) {
        todo!();
        /*
            Reset();
        */
    }
}

impl VersionBitsTester {

    pub fn reset(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            // Have each group of tests be counted by the 1000s part, starting at 1000
            num = num - (num % 1000) + 1000;

            for (unsigned int i = 0; i < vpblock.size(); i++) {
                delete vpblock[i];
            }
            for (unsigned int  i = 0; i < CHECKERS; i++) {
                checker[i] = TestConditionChecker();
                checker_delayed[i] = TestDelayedActivationConditionChecker();
                checker_always[i] = TestAlwaysActiveConditionChecker();
                checker_never[i] = TestNeverActiveConditionChecker();
            }
            vpblock.clear();
            return *this;
        */
    }
    
    pub fn mine(&mut self, 
        height:    u32,
        n_time:    i32,
        n_version: i32) -> &mut VersionBitsTester {
        
        todo!();
        /*
            while (vpblock.size() < height) {
                CBlockIndex* pindex = new CBlockIndex();
                pindex->nHeight = vpblock.size();
                pindex->pprev = Tip();
                pindex->nTime = nTime;
                pindex->nVersion = nVersion;
                pindex->BuildSkip();
                vpblock.push_back(pindex);
            }
            return *this;
        */
    }
    
    pub fn test_state_since_height(&mut self, height: i32) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestStateSinceHeight(height, height);
        */
    }
    
    pub fn test_state_since_height_with_delay(&mut self, 
        height:         i32,
        height_delayed: i32) -> &mut VersionBitsTester {
        
        todo!();
        /*
            const CBlockIndex* tip = Tip();
            for (int i = 0; i < CHECKERS; i++) {
                if (InsecureRandBits(i) == 0) {
                    BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num));
                    BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num));
                    BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num));
                    BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num));
                }
            }
            num++;
            return *this;
        */
    }
    
    pub fn test_state(&mut self, exp: ThresholdState) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(exp, exp);
        */
    }
    
    pub fn test_state_with_delay(&mut self, 
        exp:         ThresholdState,
        exp_delayed: ThresholdState) -> &mut VersionBitsTester {
        
        todo!();
        /*
            if (exp != exp_delayed) {
                // only expected differences are that delayed stays in locked_in longer
                BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE);
                BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN);
            }

            const CBlockIndex* pindex = Tip();
            for (int i = 0; i < CHECKERS; i++) {
                if (InsecureRandBits(i) == 0) {
                    ThresholdState got = checker[i].GetStateFor(pindex);
                    ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex);
                    ThresholdState got_always = checker_always[i].GetStateFor(pindex);
                    ThresholdState got_never = checker_never[i].GetStateFor(pindex);
                    // nHeight of the next block. If vpblock is empty, the next (ie first)
                    // block should be the genesis block with nHeight == 0.
                    int height = pindex == nullptr ? 0 : pindex->nHeight + 1;
                    BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got)));
                    BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed)));
                    BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always)));
                    BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never)));
                }
            }
            num++;
            return *this;
        */
    }
    
    pub fn test_defined(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::DEFINED);
        */
    }
    
    pub fn test_started(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::STARTED);
        */
    }
    
    pub fn test_locked_in(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::LOCKED_IN);
        */
    }
    
    pub fn test_active(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::ACTIVE);
        */
    }
    
    pub fn test_failed(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::FAILED);
        */
    }

    /**
      | non-delayed should be active; delayed
      | should still be locked in
      |
      */
    pub fn test_active_delayed(&mut self) -> &mut VersionBitsTester {
        
        todo!();
        /*
            return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN);
        */
    }
    
    pub fn tip(&mut self) -> Option<Arc<BlockIndex>> {
        
        todo!();
        /*
            return vpblock.empty() ? nullptr : vpblock.back();
        */
    }
}

#[cfg(test)]
#[fixture(TestingSetup)]
pub mod versionbits_tests {

    #[test] fn versionbits_test() {
        todo!();
        /*
        
            for (int i = 0; i < 64; i++) {
                // DEFINED -> STARTED after timeout reached -> FAILED
                VersionBitsTester().TestDefined().TestStateSinceHeight(0)
                                   .Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0)
                                   .Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0)
                                   .Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0)
                                   .Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) // Timeout and start time reached simultaneously
                                   .Mine(1000, TestTime(20000), 0).TestStarted().TestStateSinceHeight(1000) // Hit started, stop signalling
                                   .Mine(1999, TestTime(30001), 0).TestStarted().TestStateSinceHeight(1000)
                                   .Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(2000) // Hit failed, start signalling again
                                   .Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(2000)
                                   .Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(2000)
                                   .Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(2000)
                                   .Mine(4000, TestTime(30006), 0x100).TestFailed().TestStateSinceHeight(2000)

                // DEFINED -> STARTED -> FAILED
                                   .Reset().TestDefined().TestStateSinceHeight(0)
                                   .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
                                   .Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
                                   .Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks
                                   .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks
                                   .Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000)
                                   .Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000)

                // DEFINED -> STARTED -> LOCKEDIN after timeout reached -> ACTIVE
                                   .Reset().TestDefined().TestStateSinceHeight(0)
                                   .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
                                   .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
                                   .Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks
                                   .Mine(3000, TestTime(30000), 0x100).TestLockedIn().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new)
                                   .Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
                                   .Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
                                   .Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
                                   .Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)

                // DEFINED -> STARTED -> LOCKEDIN before timeout -> ACTIVE
                                   .Reset().TestDefined()
                                   .Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
                                   .Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
                                   .Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks
                                   .Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks
                                   .Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks
                                   .Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000)
                                   .Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
                                   .Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000
                                   .Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
                                   .Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
                                   .Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)

                // DEFINED multiple periods -> STARTED multiple periods -> FAILED
                                   .Reset().TestDefined().TestStateSinceHeight(0)
                                   .Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0)
                                   .Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
                                   .Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
                                   .Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
                                   .Mine(5999, TestTime(20000), 0).TestStarted().TestStateSinceHeight(3000)
                                   .Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000)
                                   .Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000)
                                   .Mine(24000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) // stay in FAILED no matter how much we signal
                ;
            }

        */
    }

    /**
      | Check that ComputeBlockVersion will
      | set the appropriate bit correctly
      |
      */
    pub fn check_computeblockversion(
            params: &ChainConsensusParams,
            dep:    ConsensusDeploymentPos)  {
        
        todo!();
            /*
                // This implicitly uses g_versionbitscache, so clear it every time
            g_versionbitscache.Clear();

            int64_t bit = params.vDeployments[dep].bit;
            int64_t nStartTime = params.vDeployments[dep].nStartTime;
            int64_t nTimeout = params.vDeployments[dep].nTimeout;
            int min_activation_height = params.vDeployments[dep].min_activation_height;

            // should not be any signalling for first block
            BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS);

            // always/never active deployments shouldn't need to be tested further
            if (nStartTime == consensus::BIP9Deployment::ALWAYS_ACTIVE ||
                nStartTime == consensus::BIP9Deployment::NEVER_ACTIVE)
            {
                BOOST_CHECK_EQUAL(min_activation_height, 0);
                return;
            }

            BOOST_REQUIRE(nStartTime < nTimeout);
            BOOST_REQUIRE(nStartTime >= 0);
            BOOST_REQUIRE(nTimeout <= std::numeric_limits<uint32_t>::max() || nTimeout == consensus::BIP9Deployment::NO_TIMEOUT);
            BOOST_REQUIRE(0 <= bit && bit < 32);
            // Make sure that no deployment tries to set an invalid bit.
            BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0);
            BOOST_REQUIRE(min_activation_height >= 0);
            // Check min_activation_height is on a retarget boundary
            BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0U);

            const uint32_t bitmask{g_versionbitscache.Mask(params, dep)};
            BOOST_CHECK_EQUAL(bitmask, uint32_t{1} << bit);

            // In the first chain, test that the bit is set by CBV until it has failed.
            // In the second chain, test the bit is set by CBV while STARTED and
            // LOCKED-IN, and then no longer set while ACTIVE.
            VersionBitsTester firstChain, secondChain;

            int64_t nTime = nStartTime;

            const CBlockIndex *lastBlock = nullptr;

            // Before MedianTimePast of the chain has crossed nStartTime, the bit
            // should not be set.
            if (nTime == 0) {
                // since CBlockIndex::nTime is uint32_t we can't represent any
                // earlier time, so will transition from DEFINED to STARTED at the
                // end of the first period by mining blocks at nTime == 0
                lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
                lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
                // then we'll keep mining at nStartTime...
            } else {
                // use a time 1s earlier than start time to check we stay DEFINED
                --nTime;

                // Start generating blocks before nStartTime
                lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);

                // Mine more blocks (4 less than the adjustment period) at the old time, and check that CBV isn't setting the bit yet.
                for (uint32_t i = 1; i < params.nMinerConfirmationWindow - 4; i++) {
                    lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                    BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
                }
                // Now mine 5 more blocks at the start time -- MTP should not have passed yet, so
                // CBV should still not yet set the bit.
                nTime = nStartTime;
                for (uint32_t i = params.nMinerConfirmationWindow - 4; i <= params.nMinerConfirmationWindow; i++) {
                    lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                    BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
                }
                // Next we will advance to the next period and transition to STARTED,
            }

            lastBlock = firstChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
            // so ComputeBlockVersion should now set the bit,
            BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
            // and should also be using the VERSIONBITS_TOP_BITS.
            BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);

            // Check that ComputeBlockVersion will set the bit until nTimeout
            nTime += 600;
            uint32_t blocksToMine = params.nMinerConfirmationWindow * 2; // test blocks for up to 2 time periods
            uint32_t nHeight = params.nMinerConfirmationWindow * 3;
            // These blocks are all before nTimeout is reached.
            while (nTime < nTimeout && blocksToMine > 0) {
                lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
                BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
                blocksToMine--;
                nTime += 600;
                nHeight += 1;
            }

            if (nTimeout != consensus::BIP9Deployment::NO_TIMEOUT) {
                // can reach any nTimeout other than NO_TIMEOUT due to earlier BOOST_REQUIRE

                nTime = nTimeout;

                // finish the last period before we start timing out
                while (nHeight % params.nMinerConfirmationWindow != 0) {
                    lastBlock = firstChain.Mine(nHeight+1, nTime - 1, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                    BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
                    nHeight += 1;
                }

                // FAILED is only triggered at the end of a period, so CBV should be setting
                // the bit until the period transition.
                for (uint32_t i = 0; i < params.nMinerConfirmationWindow - 1; i++) {
                    lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                    BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
                    nHeight += 1;
                }
                // The next block should trigger no longer setting the bit.
                lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
            }

            // On a new chain:
            // verify that the bit will be set after lock-in, and then stop being set
            // after activation.
            nTime = nStartTime;

            // Mine one period worth of blocks, and check that the bit will be on for the
            // next period.
            lastBlock = secondChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
            BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);

            // Mine another period worth of blocks, signaling the new bit.
            lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 2, nTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip();
            // After one period of setting the bit on each block, it should have locked in.
            // We keep setting the bit for one more period though, until activation.
            BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);

            // Now check that we keep mining the block until the end of this period, and
            // then stop at the beginning of the next period.
            lastBlock = secondChain.Mine((params.nMinerConfirmationWindow * 3) - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
            BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
            lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();

            if (lastBlock->nHeight + 1 < min_activation_height) {
                // check signalling continues while min_activation_height is not reached
                lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
                BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
                // then reach min_activation_height, which was already REQUIRE'd to start a new period
                lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
            }

            // Check that we don't signal after activation
            BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
            */
    }

    #[test] fn versionbits_computeblockversion() {
        todo!();
        /*
        
            // check that any deployment on any chain can conceivably reach both
            // ACTIVE and FAILED states in roughly the way we expect
            for (const auto& chain_name : {CBaseChainParams::MAIN, CBaseChainParams::TESTNET, CBaseChainParams::SIGNET, CBaseChainParams::REGTEST}) {
                const auto chainParams = CreateChainParams(*m_node.args, chain_name);
                uint32_t chain_all_vbits{0};
                for (int i = 0; i < (int)consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i) {
                    const auto dep = static_cast<ConsensusDeploymentPos>(i);
                    // Check that no bits are re-used (within the same chain). This is
                    // disallowed because the transition to FAILED (on timeout) does
                    // not take precedence over STARTED/LOCKED_IN. So all softforks on
                    // the same bit might overlap, even when non-overlapping start-end
                    // times are picked.
                    const uint32_t dep_mask{g_versionbitscache.Mask(chainParams->GetConsensus(), dep)};
                    BOOST_CHECK(!(chain_all_vbits & dep_mask));
                    chain_all_vbits |= dep_mask;
                    check_computeblockversion(chainParams->GetConsensus(), dep);
                }
            }

            {
                // Use regtest/testdummy to ensure we always exercise some
                // deployment that's not always/never active
                ArgsManager args;
                args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008
                const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
                check_computeblockversion(chainParams->GetConsensus(), consensus::DEPLOYMENT_TESTDUMMY);
            }

            {
                // Use regtest/testdummy to ensure we always exercise the
                // min_activation_height test, even if we're not using that in a
                // live deployment
                ArgsManager args;
                args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200
                const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
                check_computeblockversion(chainParams->GetConsensus(), consensus::DEPLOYMENT_TESTDUMMY);
            }

        */
    }
}