1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
crate::ix!();
//-------------------------------------------[.cpp/bitcoin/src/test/versionbits_tests.cpp]
/**
| Define a virtual block time, one block
| per 10 minutes after Nov 14 2014, 0:55:36am
|
*/
pub fn test_time(n_height: i32) -> i32 {
todo!();
/*
return 1415926536 + 600 * nHeight;
*/
}
pub fn state_name(state: ThresholdState) -> String {
todo!();
/*
switch (state) {
case ThresholdState::DEFINED: return "DEFINED";
case ThresholdState::STARTED: return "STARTED";
case ThresholdState::LOCKED_IN: return "LOCKED_IN";
case ThresholdState::ACTIVE: return "ACTIVE";
case ThresholdState::FAILED: return "FAILED";
} // no default case, so the compiler can warn about missing cases
return "";
*/
}
lazy_static!{
static ref PARAMS_DUMMY: ChainConsensusParams = ChainConsensusParams::default();
}
pub struct TestConditionChecker {
cache: RefCell<ThresholdConditionCache>,
}
impl abstract_threshold_condition_checker::Interface for TestConditionChecker { }
impl abstract_threshold_condition_checker::MinActivationHeight for TestConditionChecker { }
impl abstract_threshold_condition_checker::BeginTime for TestConditionChecker {
fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return TestTime(10000);
*/
}
}
impl abstract_threshold_condition_checker::EndTime for TestConditionChecker {
fn end_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return TestTime(20000);
*/
}
}
impl abstract_threshold_condition_checker::Period for TestConditionChecker {
fn period(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return 1000;
*/
}
}
impl abstract_threshold_condition_checker::Threshold for TestConditionChecker {
fn threshold(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return 900;
*/
}
}
impl abstract_threshold_condition_checker::Condition for TestConditionChecker {
fn condition(&self,
pindex: *const BlockIndex,
params: &ChainConsensusParams) -> bool {
todo!();
/*
return (pindex->nVersion & 0x100);
*/
}
}
impl TestConditionChecker {
fn get_state_for(&self, pindex_prev: *const BlockIndex) -> ThresholdState {
todo!();
/*
return AbstractThresholdConditionChecker::GetStateFor(pindexPrev, paramsDummy, cache);
*/
}
fn get_state_since_height_for(&self, pindex_prev: *const BlockIndex) -> i32 {
todo!();
/*
return AbstractThresholdConditionChecker::GetStateSinceHeightFor(pindexPrev, paramsDummy, cache);
*/
}
}
///------------------------
pub struct TestDelayedActivationConditionChecker {
base: TestConditionChecker,
}
impl abstract_threshold_condition_checker::MinActivationHeight for TestDelayedActivationConditionChecker {
fn min_activation_height(&self, params: &ChainConsensusParams) -> i32 {
todo!();
/*
return 15000;
*/
}
}
///------------------------
pub struct TestAlwaysActiveConditionChecker {
base: TestConditionChecker,
}
impl TestAlwaysActiveConditionChecker {
pub fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return consensus::BIP9Deployment::ALWAYS_ACTIVE;
*/
}
}
///------------------------
pub struct TestNeverActiveConditionChecker {
base: TestConditionChecker,
}
impl TestNeverActiveConditionChecker {
pub fn begin_time(&self, params: &ChainConsensusParams) -> i64 {
todo!();
/*
return consensus::BIP9Deployment::NEVER_ACTIVE;
*/
}
}
pub const CHECKERS: usize = 6;
///------------------------
pub struct VersionBitsTester {
/**
| A fake blockchain
|
*/
vpblock: Vec<*mut BlockIndex>,
/**
| 6 independent checkers for the same
| bit.
|
| The first one performs all checks, the
| second only 50%, the third only 25%,
| etc...
|
| This is to test whether lack of cached
| information leads to the same results.
|
*/
checker: [TestConditionChecker; CHECKERS],
/**
| Another 6 that assume delayed activation
|
*/
checker_delayed: [TestDelayedActivationConditionChecker; CHECKERS],
/**
| Another 6 that assume always active
| activation
|
*/
checker_always: [TestAlwaysActiveConditionChecker; CHECKERS],
/**
| Another 6 that assume never active activation
|
*/
checker_never: [TestNeverActiveConditionChecker; CHECKERS],
/**
| Test counter (to identify failures)
|
*/
num: i32, // default = { 1000 }
}
impl Drop for VersionBitsTester {
fn drop(&mut self) {
todo!();
/*
Reset();
*/
}
}
impl VersionBitsTester {
pub fn reset(&mut self) -> &mut VersionBitsTester {
todo!();
/*
// Have each group of tests be counted by the 1000s part, starting at 1000
num = num - (num % 1000) + 1000;
for (unsigned int i = 0; i < vpblock.size(); i++) {
delete vpblock[i];
}
for (unsigned int i = 0; i < CHECKERS; i++) {
checker[i] = TestConditionChecker();
checker_delayed[i] = TestDelayedActivationConditionChecker();
checker_always[i] = TestAlwaysActiveConditionChecker();
checker_never[i] = TestNeverActiveConditionChecker();
}
vpblock.clear();
return *this;
*/
}
pub fn mine(&mut self,
height: u32,
n_time: i32,
n_version: i32) -> &mut VersionBitsTester {
todo!();
/*
while (vpblock.size() < height) {
CBlockIndex* pindex = new CBlockIndex();
pindex->nHeight = vpblock.size();
pindex->pprev = Tip();
pindex->nTime = nTime;
pindex->nVersion = nVersion;
pindex->BuildSkip();
vpblock.push_back(pindex);
}
return *this;
*/
}
pub fn test_state_since_height(&mut self, height: i32) -> &mut VersionBitsTester {
todo!();
/*
return TestStateSinceHeight(height, height);
*/
}
pub fn test_state_since_height_with_delay(&mut self,
height: i32,
height_delayed: i32) -> &mut VersionBitsTester {
todo!();
/*
const CBlockIndex* tip = Tip();
for (int i = 0; i < CHECKERS; i++) {
if (InsecureRandBits(i) == 0) {
BOOST_CHECK_MESSAGE(checker[i].GetStateSinceHeightFor(tip) == height, strprintf("Test %i for StateSinceHeight", num));
BOOST_CHECK_MESSAGE(checker_delayed[i].GetStateSinceHeightFor(tip) == height_delayed, strprintf("Test %i for StateSinceHeight (delayed)", num));
BOOST_CHECK_MESSAGE(checker_always[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (always active)", num));
BOOST_CHECK_MESSAGE(checker_never[i].GetStateSinceHeightFor(tip) == 0, strprintf("Test %i for StateSinceHeight (never active)", num));
}
}
num++;
return *this;
*/
}
pub fn test_state(&mut self, exp: ThresholdState) -> &mut VersionBitsTester {
todo!();
/*
return TestState(exp, exp);
*/
}
pub fn test_state_with_delay(&mut self,
exp: ThresholdState,
exp_delayed: ThresholdState) -> &mut VersionBitsTester {
todo!();
/*
if (exp != exp_delayed) {
// only expected differences are that delayed stays in locked_in longer
BOOST_CHECK_EQUAL(exp, ThresholdState::ACTIVE);
BOOST_CHECK_EQUAL(exp_delayed, ThresholdState::LOCKED_IN);
}
const CBlockIndex* pindex = Tip();
for (int i = 0; i < CHECKERS; i++) {
if (InsecureRandBits(i) == 0) {
ThresholdState got = checker[i].GetStateFor(pindex);
ThresholdState got_delayed = checker_delayed[i].GetStateFor(pindex);
ThresholdState got_always = checker_always[i].GetStateFor(pindex);
ThresholdState got_never = checker_never[i].GetStateFor(pindex);
// nHeight of the next block. If vpblock is empty, the next (ie first)
// block should be the genesis block with nHeight == 0.
int height = pindex == nullptr ? 0 : pindex->nHeight + 1;
BOOST_CHECK_MESSAGE(got == exp, strprintf("Test %i for %s height %d (got %s)", num, StateName(exp), height, StateName(got)));
BOOST_CHECK_MESSAGE(got_delayed == exp_delayed, strprintf("Test %i for %s height %d (got %s; delayed case)", num, StateName(exp_delayed), height, StateName(got_delayed)));
BOOST_CHECK_MESSAGE(got_always == ThresholdState::ACTIVE, strprintf("Test %i for ACTIVE height %d (got %s; always active case)", num, height, StateName(got_always)));
BOOST_CHECK_MESSAGE(got_never == ThresholdState::FAILED, strprintf("Test %i for FAILED height %d (got %s; never active case)", num, height, StateName(got_never)));
}
}
num++;
return *this;
*/
}
pub fn test_defined(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::DEFINED);
*/
}
pub fn test_started(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::STARTED);
*/
}
pub fn test_locked_in(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::LOCKED_IN);
*/
}
pub fn test_active(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::ACTIVE);
*/
}
pub fn test_failed(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::FAILED);
*/
}
/**
| non-delayed should be active; delayed
| should still be locked in
|
*/
pub fn test_active_delayed(&mut self) -> &mut VersionBitsTester {
todo!();
/*
return TestState(ThresholdState::ACTIVE, ThresholdState::LOCKED_IN);
*/
}
pub fn tip(&mut self) -> Option<Arc<BlockIndex>> {
todo!();
/*
return vpblock.empty() ? nullptr : vpblock.back();
*/
}
}
#[cfg(test)]
#[fixture(TestingSetup)]
pub mod versionbits_tests {
#[test] fn versionbits_test() {
todo!();
/*
for (int i = 0; i < 64; i++) {
// DEFINED -> STARTED after timeout reached -> FAILED
VersionBitsTester().TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(11, TestTime(11), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(989, TestTime(989), 0x100).TestDefined().TestStateSinceHeight(0)
.Mine(999, TestTime(20000), 0x100).TestDefined().TestStateSinceHeight(0) // Timeout and start time reached simultaneously
.Mine(1000, TestTime(20000), 0).TestStarted().TestStateSinceHeight(1000) // Hit started, stop signalling
.Mine(1999, TestTime(30001), 0).TestStarted().TestStateSinceHeight(1000)
.Mine(2000, TestTime(30002), 0x100).TestFailed().TestStateSinceHeight(2000) // Hit failed, start signalling again
.Mine(2001, TestTime(30003), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(2999, TestTime(30004), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(3000, TestTime(30005), 0x100).TestFailed().TestStateSinceHeight(2000)
.Mine(4000, TestTime(30006), 0x100).TestFailed().TestStateSinceHeight(2000)
// DEFINED -> STARTED -> FAILED
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x100).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x100).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2051, TestTime(10010), 0).TestStarted().TestStateSinceHeight(2000) // 51 old blocks
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 899 new blocks
.Mine(3000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(3000) // 50 old blocks (so 899 out of the past 1000)
.Mine(4000, TestTime(20010), 0x100).TestFailed().TestStateSinceHeight(3000)
// DEFINED -> STARTED -> LOCKEDIN after timeout reached -> ACTIVE
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2999, TestTime(30000), 0x100).TestStarted().TestStateSinceHeight(2000) // 999 new blocks
.Mine(3000, TestTime(30000), 0x100).TestLockedIn().TestStateSinceHeight(3000) // 1 new block (so 1000 out of the past 1000 are new)
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
// DEFINED -> STARTED -> LOCKEDIN before timeout -> ACTIVE
.Reset().TestDefined()
.Mine(1, TestTime(1), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(10000) - 1, 0x101).TestDefined().TestStateSinceHeight(0) // One second more and it would be defined
.Mine(2000, TestTime(10000), 0x101).TestStarted().TestStateSinceHeight(2000) // So that's what happens the next period
.Mine(2050, TestTime(10010), 0x200).TestStarted().TestStateSinceHeight(2000) // 50 old blocks
.Mine(2950, TestTime(10020), 0x100).TestStarted().TestStateSinceHeight(2000) // 900 new blocks
.Mine(2999, TestTime(19999), 0x200).TestStarted().TestStateSinceHeight(2000) // 49 old blocks
.Mine(3000, TestTime(29999), 0x200).TestLockedIn().TestStateSinceHeight(3000) // 1 old block (so 900 out of the past 1000)
.Mine(3999, TestTime(30001), 0).TestLockedIn().TestStateSinceHeight(3000)
.Mine(4000, TestTime(30002), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000) // delayed will not become active until height=15000
.Mine(14333, TestTime(30003), 0).TestActiveDelayed().TestStateSinceHeight(4000, 3000)
.Mine(15000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
.Mine(24000, TestTime(40000), 0).TestActive().TestStateSinceHeight(4000, 15000)
// DEFINED multiple periods -> STARTED multiple periods -> FAILED
.Reset().TestDefined().TestStateSinceHeight(0)
.Mine(999, TestTime(999), 0).TestDefined().TestStateSinceHeight(0)
.Mine(1000, TestTime(1000), 0).TestDefined().TestStateSinceHeight(0)
.Mine(2000, TestTime(2000), 0).TestDefined().TestStateSinceHeight(0)
.Mine(3000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(4000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(5000, TestTime(10000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(5999, TestTime(20000), 0).TestStarted().TestStateSinceHeight(3000)
.Mine(6000, TestTime(20000), 0).TestFailed().TestStateSinceHeight(6000)
.Mine(7000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000)
.Mine(24000, TestTime(20000), 0x100).TestFailed().TestStateSinceHeight(6000) // stay in FAILED no matter how much we signal
;
}
*/
}
/**
| Check that ComputeBlockVersion will
| set the appropriate bit correctly
|
*/
pub fn check_computeblockversion(
params: &ChainConsensusParams,
dep: ConsensusDeploymentPos) {
todo!();
/*
// This implicitly uses g_versionbitscache, so clear it every time
g_versionbitscache.Clear();
int64_t bit = params.vDeployments[dep].bit;
int64_t nStartTime = params.vDeployments[dep].nStartTime;
int64_t nTimeout = params.vDeployments[dep].nTimeout;
int min_activation_height = params.vDeployments[dep].min_activation_height;
// should not be any signalling for first block
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(nullptr, params), VERSIONBITS_TOP_BITS);
// always/never active deployments shouldn't need to be tested further
if (nStartTime == consensus::BIP9Deployment::ALWAYS_ACTIVE ||
nStartTime == consensus::BIP9Deployment::NEVER_ACTIVE)
{
BOOST_CHECK_EQUAL(min_activation_height, 0);
return;
}
BOOST_REQUIRE(nStartTime < nTimeout);
BOOST_REQUIRE(nStartTime >= 0);
BOOST_REQUIRE(nTimeout <= std::numeric_limits<uint32_t>::max() || nTimeout == consensus::BIP9Deployment::NO_TIMEOUT);
BOOST_REQUIRE(0 <= bit && bit < 32);
// Make sure that no deployment tries to set an invalid bit.
BOOST_REQUIRE(((1 << bit) & VERSIONBITS_TOP_MASK) == 0);
BOOST_REQUIRE(min_activation_height >= 0);
// Check min_activation_height is on a retarget boundary
BOOST_REQUIRE_EQUAL(min_activation_height % params.nMinerConfirmationWindow, 0U);
const uint32_t bitmask{g_versionbitscache.Mask(params, dep)};
BOOST_CHECK_EQUAL(bitmask, uint32_t{1} << bit);
// In the first chain, test that the bit is set by CBV until it has failed.
// In the second chain, test the bit is set by CBV while STARTED and
// LOCKED-IN, and then no longer set while ACTIVE.
VersionBitsTester firstChain, secondChain;
int64_t nTime = nStartTime;
const CBlockIndex *lastBlock = nullptr;
// Before MedianTimePast of the chain has crossed nStartTime, the bit
// should not be set.
if (nTime == 0) {
// since CBlockIndex::nTime is uint32_t we can't represent any
// earlier time, so will transition from DEFINED to STARTED at the
// end of the first period by mining blocks at nTime == 0
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// then we'll keep mining at nStartTime...
} else {
// use a time 1s earlier than start time to check we stay DEFINED
--nTime;
// Start generating blocks before nStartTime
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
// Mine more blocks (4 less than the adjustment period) at the old time, and check that CBV isn't setting the bit yet.
for (uint32_t i = 1; i < params.nMinerConfirmationWindow - 4; i++) {
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// Now mine 5 more blocks at the start time -- MTP should not have passed yet, so
// CBV should still not yet set the bit.
nTime = nStartTime;
for (uint32_t i = params.nMinerConfirmationWindow - 4; i <= params.nMinerConfirmationWindow; i++) {
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow + i, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// Next we will advance to the next period and transition to STARTED,
}
lastBlock = firstChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
// so ComputeBlockVersion should now set the bit,
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// and should also be using the VERSIONBITS_TOP_BITS.
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
// Check that ComputeBlockVersion will set the bit until nTimeout
nTime += 600;
uint32_t blocksToMine = params.nMinerConfirmationWindow * 2; // test blocks for up to 2 time periods
uint32_t nHeight = params.nMinerConfirmationWindow * 3;
// These blocks are all before nTimeout is reached.
while (nTime < nTimeout && blocksToMine > 0) {
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & VERSIONBITS_TOP_MASK, VERSIONBITS_TOP_BITS);
blocksToMine--;
nTime += 600;
nHeight += 1;
}
if (nTimeout != consensus::BIP9Deployment::NO_TIMEOUT) {
// can reach any nTimeout other than NO_TIMEOUT due to earlier BOOST_REQUIRE
nTime = nTimeout;
// finish the last period before we start timing out
while (nHeight % params.nMinerConfirmationWindow != 0) {
lastBlock = firstChain.Mine(nHeight+1, nTime - 1, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
nHeight += 1;
}
// FAILED is only triggered at the end of a period, so CBV should be setting
// the bit until the period transition.
for (uint32_t i = 0; i < params.nMinerConfirmationWindow - 1; i++) {
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
nHeight += 1;
}
// The next block should trigger no longer setting the bit.
lastBlock = firstChain.Mine(nHeight+1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
}
// On a new chain:
// verify that the bit will be set after lock-in, and then stop being set
// after activation.
nTime = nStartTime;
// Mine one period worth of blocks, and check that the bit will be on for the
// next period.
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// Mine another period worth of blocks, signaling the new bit.
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 2, nTime, VERSIONBITS_TOP_BITS | (1<<bit)).Tip();
// After one period of setting the bit on each block, it should have locked in.
// We keep setting the bit for one more period though, until activation.
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// Now check that we keep mining the block until the end of this period, and
// then stop at the beginning of the next period.
lastBlock = secondChain.Mine((params.nMinerConfirmationWindow * 3) - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
lastBlock = secondChain.Mine(params.nMinerConfirmationWindow * 3, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
if (lastBlock->nHeight + 1 < min_activation_height) {
// check signalling continues while min_activation_height is not reached
lastBlock = secondChain.Mine(min_activation_height - 1, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
BOOST_CHECK((g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit)) != 0);
// then reach min_activation_height, which was already REQUIRE'd to start a new period
lastBlock = secondChain.Mine(min_activation_height, nTime, VERSIONBITS_LAST_OLD_BLOCK_VERSION).Tip();
}
// Check that we don't signal after activation
BOOST_CHECK_EQUAL(g_versionbitscache.ComputeBlockVersion(lastBlock, params) & (1 << bit), 0);
*/
}
#[test] fn versionbits_computeblockversion() {
todo!();
/*
// check that any deployment on any chain can conceivably reach both
// ACTIVE and FAILED states in roughly the way we expect
for (const auto& chain_name : {CBaseChainParams::MAIN, CBaseChainParams::TESTNET, CBaseChainParams::SIGNET, CBaseChainParams::REGTEST}) {
const auto chainParams = CreateChainParams(*m_node.args, chain_name);
uint32_t chain_all_vbits{0};
for (int i = 0; i < (int)consensus::MAX_VERSION_BITS_DEPLOYMENTS; ++i) {
const auto dep = static_cast<ConsensusDeploymentPos>(i);
// Check that no bits are re-used (within the same chain). This is
// disallowed because the transition to FAILED (on timeout) does
// not take precedence over STARTED/LOCKED_IN. So all softforks on
// the same bit might overlap, even when non-overlapping start-end
// times are picked.
const uint32_t dep_mask{g_versionbitscache.Mask(chainParams->GetConsensus(), dep)};
BOOST_CHECK(!(chain_all_vbits & dep_mask));
chain_all_vbits |= dep_mask;
check_computeblockversion(chainParams->GetConsensus(), dep);
}
}
{
// Use regtest/testdummy to ensure we always exercise some
// deployment that's not always/never active
ArgsManager args;
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999"); // January 1, 2008 - December 31, 2008
const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
check_computeblockversion(chainParams->GetConsensus(), consensus::DEPLOYMENT_TESTDUMMY);
}
{
// Use regtest/testdummy to ensure we always exercise the
// min_activation_height test, even if we're not using that in a
// live deployment
ArgsManager args;
args.ForceSetArg("-vbparams", "testdummy:1199145601:1230767999:403200"); // January 1, 2008 - December 31, 2008, min act height 403200
const auto chainParams = CreateChainParams(args, CBaseChainParams::REGTEST);
check_computeblockversion(chainParams->GetConsensus(), consensus::DEPLOYMENT_TESTDUMMY);
}
*/
}
}