1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
crate::ix!();
//-------------------------------------------[.cpp/bitcoin/src/merkleblock.h]
//-------------------------------------------[.cpp/bitcoin/src/merkleblock.cpp]
/**
| Helper functions for serialization.
|
*/
pub fn bits_to_bytes(bits: &Vec<bool>) -> Vec<u8> {
todo!();
/*
std::vector<unsigned char> ret((bits.size() + 7) / 8);
for (unsigned int p = 0; p < bits.size(); p++) {
ret[p / 8] |= bits[p] << (p % 8);
}
return ret;
*/
}
pub fn bytes_to_bits(bytes: &Vec<u8>) -> Vec<bool> {
todo!();
/*
std::vector<bool> ret(bytes.size() * 8);
for (unsigned int p = 0; p < ret.size(); p++) {
ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0;
}
return ret;
*/
}
/**
| Data structure that represents a partial merkle
| tree.
|
| It represents a subset of the txid's of a known
| block, in a way that allows recovery of the
| list of txid's and the merkle root, in an
| authenticated way.
|
| The encoding works as follows: we traverse the
| tree in depth-first order, storing a bit for
| each traversed node, signifying whether the
| node is the parent of at least one matched leaf
| txid (or a matched txid itself). In case we are
| at the leaf level, or this bit is 0, its merkle
| node hash is stored, and its children are not
| explored further. Otherwise, no hash is stored,
| but we recurse into both (or the only) child
| branch. During decoding, the same depth-first
| traversal is performed, consuming bits and
| hashes as they written during encoding.
|
| The serialization is fixed and provides a hard
| guarantee about the encoded size:
|
| SIZE <= 10 + ceil(32.25*N)
|
| Where N represents the number of leaf nodes of
| the partial tree. N itself is bounded by:
|
| N <= total_transactions
| N <= 1 + matched_transactions*tree_height
|
| The serialization format:
|
| - uint32 total_transactions (4 bytes)
|
| - varint number of hashes (1-3 bytes)
|
| - uint256[] hashes in depth-first order (<=
| 32*N bytes)
|
| - varint number of bytes of flag bits (1-3
| bytes)
|
| - byte[] flag bits, packed per 8 in
| a byte, least significant bit
| first (<= 2*N-1 bits)
|
| The size constraints follow from this.
*/
pub struct PartialMerkleTree {
/**
| the total number of transactions in
| the block
|
*/
n_transactions: u32,
/**
| node-is-parent-of-matched-txid
| bits
|
*/
bits: Vec<bool>,
/**
| txids and internal hashes
|
*/
hash: Vec<u256>,
/**
| flag set when encountering invalid
| data
|
*/
bad: bool,
}
lazy_static!{
/*
SERIALIZE_METHODS(CPartialMerkleTree, obj)
{
READWRITE(obj.nTransactions, obj.vHash);
std::vector<unsigned char> bytes;
SER_WRITE(obj, bytes = BitsToBytes(obj.vBits));
READWRITE(bytes);
SER_READ(obj, obj.vBits = BytesToBits(bytes));
SER_READ(obj, obj.fBad = false);
}
*/
}
impl Default for PartialMerkleTree {
fn default() -> Self {
todo!();
/*
: n_transactions(0),
: bad(true),
*/
}
}
impl PartialMerkleTree {
/**
| helper function to efficiently calculate
| the number of nodes at given height in
| the merkle tree
|
*/
pub fn calc_tree_width(&self, height: i32) -> u32 {
todo!();
/*
return (nTransactions+(1 << height)-1) >> height;
*/
}
/**
| Get number of transactions the merkle
| proof is indicating for cross-reference
| with local blockchain knowledge.
|
*/
pub fn get_num_transactions(&self) -> u32 {
todo!();
/*
return nTransactions; }{
*/
}
/**
| calculate the hash of a node in the merkle
| tree (at leaf level: the txid's themselves)
|
*/
pub fn calc_hash(&mut self,
height: i32,
pos: u32,
txid: &Vec<u256>) -> u256 {
todo!();
/*
//we can never have zero txs in a merkle block, we always need the coinbase tx
//if we do not have this assert, we can hit a memory access violation when indexing into vTxid
assert(vTxid.size() != 0);
if (height == 0) {
// hash at height 0 is the txids themselves
return vTxid[pos];
} else {
// calculate left hash
uint256 left = CalcHash(height-1, pos*2, vTxid), right;
// calculate right hash if not beyond the end of the array - copy left hash otherwise
if (pos*2+1 < CalcTreeWidth(height-1))
right = CalcHash(height-1, pos*2+1, vTxid);
else
right = left;
// combine subhashes
return Hash(left, right);
}
*/
}
/**
| recursive function that traverses
| tree nodes, storing the data as bits
| and hashes
|
*/
pub fn traverse_and_build(&mut self,
height: i32,
pos: u32,
txid: &Vec<u256>,
match_: &Vec<bool>) {
todo!();
/*
// determine whether this node is the parent of at least one matched txid
bool fParentOfMatch = false;
for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
fParentOfMatch |= vMatch[p];
// store as flag bit
vBits.push_back(fParentOfMatch);
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, store hash and stop
vHash.push_back(CalcHash(height, pos, vTxid));
} else {
// otherwise, don't store any hash, but descend into the subtrees
TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
if (pos*2+1 < CalcTreeWidth(height-1))
TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
}
*/
}
/**
| recursive function that traverses
| tree nodes, consuming the bits and hashes
| produced by TraverseAndBuild. it returns
| the hash of the respective node and its
| respective index.
|
*/
pub fn traverse_and_extract(&mut self,
height: i32,
pos: u32,
n_bits_used: &mut u32,
n_hash_used: &mut u32,
match_: &mut Vec<u256>,
vn_index: &mut Vec<u32>) -> u256 {
todo!();
/*
if (nBitsUsed >= vBits.size()) {
// overflowed the bits array - failure
fBad = true;
return uint256();
}
bool fParentOfMatch = vBits[nBitsUsed++];
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, use stored hash and do not descend
if (nHashUsed >= vHash.size()) {
// overflowed the hash array - failure
fBad = true;
return uint256();
}
const uint256 &hash = vHash[nHashUsed++];
if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
vMatch.push_back(hash);
vnIndex.push_back(pos);
}
return hash;
} else {
// otherwise, descend into the subtrees to extract matched txids and hashes
uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
if (pos*2+1 < CalcTreeWidth(height-1)) {
right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
if (right == left) {
// The left and right branches should never be identical, as the transaction
// hashes covered by them must each be unique.
fBad = true;
}
} else {
right = left;
}
// and combine them before returning
return Hash(left, right);
}
*/
}
/**
| Construct a partial merkle tree from
| a list of transaction ids, and a mask
| that selects a subset of them
|
*/
pub fn new_with_txid_and_match(
txid: &Vec<u256>,
match_: &Vec<bool>) -> Self {
todo!();
/*
: n_transactions(vTxid.size()),
: bad(false),
// reset state
vBits.clear();
vHash.clear();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
*/
}
/**
| extract the matching txid's represented
| by this partial merkle tree and their
| respective indices within the partial
| tree. returns the merkle root, or 0 in
| case of failure
|
*/
pub fn extract_matches(&mut self,
match_: &mut Vec<u256>,
vn_index: &mut Vec<u32>) -> u256 {
todo!();
/*
vMatch.clear();
// An empty set will not work
if (nTransactions == 0)
return uint256();
// check for excessively high numbers of transactions
if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT)
return uint256();
// there can never be more hashes provided than one for every txid
if (vHash.size() > nTransactions)
return uint256();
// there must be at least one bit per node in the partial tree, and at least one node per hash
if (vBits.size() < vHash.size())
return uint256();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
unsigned int nBitsUsed = 0, nHashUsed = 0;
uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
// verify that no problems occurred during the tree traversal
if (fBad)
return uint256();
// verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
return uint256();
// verify that all hashes were consumed
if (nHashUsed != vHash.size())
return uint256();
return hashMerkleRoot;
*/
}
}
/**
| Used to relay blocks as header + vector<merkle
| branch> to filtered nodes.
|
| -----------
| @note
|
| The class assumes that the given CBlock
| has *at least* 1 transaction. If the
| CBlock has 0 txs, it will hit an assertion.
|
*/
#[derive(Default)]
pub struct MerkleBlock {
/**
| Public only for unit testing
|
*/
pub header: BlockHeader,
pub txn: PartialMerkleTree,
/**
| Public only for unit testing and relay
| testing (not relayed).
|
| Used only when a bloom filter is specified
| to allow testing the transactions which
| matched the bloom filter.
|
*/
pub matched_txn: Vec<(u32,u256)>,
}
lazy_static!{
/*
SERIALIZE_METHODS(CMerkleBlock, obj) {
READWRITE(obj.header, obj.txn);
}
*/
}
impl MerkleBlock {
/**
| Create from a Block, filtering transactions
| according to filter
|
| -----------
| @note
|
| this will call IsRelevantAndUpdate
| on the filter for each transaction,
| thus the filter will likely be modified.
|
*/
pub fn new_with_block_and_filter(
block: Amo<Block>,
filter: &mut BloomFilter) -> Self {
todo!();
/*
: CMerkleBlock(block, &filter, nullptr)
*/
}
/**
| Create from a Block, matching the txids
| in the set
|
*/
pub fn new_with_block_and_txids(
block: &Block,
txids: &HashSet<u256>) -> Self {
todo!();
/*
: CMerkleBlock(block, nullptr, &txids)
*/
}
/**
| Combined constructor to consolidate
| code
|
*/
pub fn new_with_block_filter_and_txids(
block: &Block,
filter: *mut BloomFilter,
txids: *const HashSet<u256>) -> Self {
todo!();
/*
header = block.GetBlockHeader();
std::vector<bool> vMatch;
std::vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const uint256& hash = block.vtx[i]->GetHash();
if (txids && txids->count(hash)) {
vMatch.push_back(true);
} else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) {
vMatch.push_back(true);
vMatchedTxn.emplace_back(i, hash);
} else {
vMatch.push_back(false);
}
vHashes.push_back(hash);
}
txn = CPartialMerkleTree(vHashes, vMatch);
*/
}
}