1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
use std::cmp;
use std::collections::HashMap;
use std::mem;

#[cfg(test)]
extern crate quickcheck;
#[cfg(test)]
#[macro_use(quickcheck)]
extern crate quickcheck_macros;

#[cfg(test)]
#[macro_use]
extern crate lazy_static;

#[cfg(test)]
mod test;

/// Match represents a single match of a pattern within a string.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Match {
    /// The edit distance for this match. Zero means it was an exact match,
    /// one means a single edit, etc.
    pub distance: usize,
    /// The index that this match _ends_ on. Determining start position isn't
    /// possible (unless `distance` is zero), so this is all you have access to.
    pub end: usize,
}

static ERR_INVALID_PATTERN: &'static str = "invalid pattern length";

/// Returns whether the passed value is a valid pattern length.
///
/// Because of implementation details of the bitap algorithm itself, patterns
/// can only be as long as the system word size minus one. That's 31/63
/// depending on the architecture you're compiling for. Additionally, patterns
/// with a length of zero are rejected.
#[inline]
pub fn pattern_length_is_valid(pattern_length: usize) -> bool {
    pattern_length > 0 && pattern_length < mem::size_of::<usize>() * 8
}

/// Iterator adapter for implementing bitap find over an iterator of pattern
/// masks.
pub fn find<I: Iterator<Item = usize>>(
    mask_iter: I,
    pattern_length: usize,
) -> Result<impl Iterator<Item = usize>, &'static str> {
    if !pattern_length_is_valid(pattern_length) {
        return Err(ERR_INVALID_PATTERN);
    }
    // In find, unlike the other functions, we want to return the _start_ index of the
    // matches because it's actually possible to recover.
    let offset = pattern_length - 1;
    let mut r = !1usize;
    let matches = mask_iter.enumerate().filter_map(move |(i, mask)| {
        r |= mask;
        r <<= 1;
        if 0 == (r & (1usize << pattern_length)) {
            return Some(i - offset);
        }
        None
    });
    Ok(matches)
}

/// Iterator adapter for implementing bitap for levenshtein distance over an
/// iterator of pattern masks.
pub fn levenshtein<I: Iterator<Item = usize>>(
    mask_iter: I,
    pattern_length: usize,
    max_distance: usize,
) -> Result<impl Iterator<Item = Match>, &'static str> {
    if !pattern_length_is_valid(pattern_length) {
        return Err(ERR_INVALID_PATTERN);
    }
    let max_distance = cmp::min(max_distance, pattern_length);
    let mut r: Vec<usize> = (0..=max_distance).map(|i| !1usize << i).collect();

    let matches = mask_iter.enumerate().filter_map(move |(i, mask)| {
        let mut prev_parent = r[0];
        r[0] |= mask;
        r[0] <<= 1;
        for j in 1..r.len() {
            let prev = r[j];
            let current = (prev | mask) << 1;
            let replace = prev_parent << 1;
            let delete = r[j - 1] << 1;
            let insert = prev_parent;
            r[j] = current & insert & delete & replace;
            prev_parent = prev;
        }
        for (k, rv) in r.iter().enumerate() {
            if 0 == (rv & (1usize << pattern_length)) {
                return Some(Match {
                    distance: k,
                    end: i,
                });
            }
        }
        None
    });
    Ok(matches)
}

/// Iterator adapter for implementing bitap for optimal string alignment
/// distance over an iterator of pattern masks.
pub fn optimal_string_alignment<I: Iterator<Item = usize>>(
    mask_iter: I,
    pattern_length: usize,
    max_distance: usize,
) -> Result<impl Iterator<Item = Match>, &'static str> {
    if !pattern_length_is_valid(pattern_length) {
        return Err(ERR_INVALID_PATTERN);
    }
    let max_distance = cmp::min(max_distance, pattern_length);
    let mut r: Vec<usize> = (0..=max_distance).map(|i| !1usize << i).collect();
    let mut t = vec![!1usize; max_distance];

    let matches = mask_iter.enumerate().filter_map(move |(i, mask)| {
        let mut prev_parent = r[0];
        r[0] |= mask;
        r[0] <<= 1;
        for j in 1..r.len() {
            let prev = r[j];
            let current = (prev | mask) << 1;
            let replace = prev_parent << 1;
            let delete = r[j - 1] << 1;
            let insert = prev_parent;
            let transpose = (t[j - 1] | (mask << 1)) << 1;
            r[j] = current & insert & delete & replace & transpose;
            t[j - 1] = (prev_parent << 1) | mask;
            prev_parent = prev;
        }
        for (k, rv) in r.iter().enumerate() {
            if 0 == (rv & (1usize << pattern_length)) {
                return Some(Match {
                    distance: k,
                    end: i,
                });
            }
        }
        None
    });
    Ok(matches)
}

pub enum StaticMaxDistance {
    One = 1,
    Two = 2,
}

/// Like the levenshtein iterator adapter, but optimized for max_distances of
/// 1-2.
pub fn levenshtein_static<I: Iterator<Item = usize>>(
    mask_iter: I,
    pattern_length: usize,
    max_distance: StaticMaxDistance,
) -> Result<impl Iterator<Item = Match>, &'static str> {
    if !pattern_length_is_valid(pattern_length) {
        return Err(ERR_INVALID_PATTERN);
    }
    let max_distance = cmp::min(max_distance as usize, pattern_length);
    let mut r = [!1usize, !1usize << 1, !1usize << 2];

    let matches = mask_iter.enumerate().filter_map(move |(i, mask)| {
        let mut prev_parent = r[0];
        r[0] |= mask;
        r[0] <<= 1;
        for j in (1..r.len()).take(max_distance) {
            let prev = r[j];
            let current = (prev | mask) << 1;
            let replace = prev_parent << 1;
            let delete = r[j - 1] << 1;
            let insert = prev_parent;
            r[j] = current & insert & delete & replace;
            prev_parent = prev;
        }
        for (k, rv) in r.iter().take(max_distance + 1).enumerate() {
            if 0 == (rv & (1usize << pattern_length)) {
                return Some(Match {
                    distance: k,
                    end: i,
                });
            }
        }
        None
    });
    Ok(matches)
}

/// Like the optimal_string_alignment iterator adapter, but optimized for
/// max_distances of 1-2.
pub fn optimal_string_alignment_static<I: Iterator<Item = usize>>(
    mask_iter: I,
    pattern_length: usize,
    max_distance: StaticMaxDistance,
) -> Result<impl Iterator<Item = Match>, &'static str> {
    if !pattern_length_is_valid(pattern_length) {
        return Err(ERR_INVALID_PATTERN);
    }
    let max_distance = cmp::min(max_distance as usize, pattern_length);
    let mut r = [!1usize, !1usize << 1, !1usize << 2];
    let mut t = [!1usize, !1usize];

    let matches = mask_iter.enumerate().filter_map(move |(i, mask)| {
        let mut prev_parent = r[0];
        r[0] |= mask;
        r[0] <<= 1;
        for j in (1..r.len()).take(max_distance) {
            let prev = r[j];
            let current = (prev | mask) << 1;
            let replace = prev_parent << 1;
            let delete = r[j - 1] << 1;
            let insert = prev_parent;
            let transpose = (t[j - 1] | (mask << 1)) << 1;
            r[j] = current & insert & delete & replace & transpose;
            t[j - 1] = (prev_parent << 1) | mask;
            prev_parent = prev;
        }
        for (k, rv) in r.iter().take(max_distance + 1).enumerate() {
            if 0 == (rv & (1usize << pattern_length)) {
                return Some(Match {
                    distance: k,
                    end: i,
                });
            }
        }
        None
    });
    Ok(matches)
}

/// A compiled pattern string that can be used to search text.
pub struct Pattern {
    length: usize,
    masks: HashMap<char, usize>,
}

impl Pattern {
    /// Compiles and returns a new pattern from the passed string. Will fail
    /// if the passed pattern is empty or longer than the system word size.
    pub fn new(pattern: &str) -> Result<Pattern, &'static str> {
        let mut length = 0;
        // Create a mapping from characters to character masks. A "character's
        // mask" in this case is a bitmask where, for every index that
        // character is used in the pattern string, the value is zero.
        //
        // Roughly if the pattern were "abcab" the character masks would be as
        // follows (albeit reversed, so the first character corresponds to the
        // least significant bit). The remaining bits are all set to 1.
        //
        //        abcab abcab
        //   "a": X..X. 01101
        //   "b": .X..X 10110
        //   "c": ..X.. 11011
        //
        let mut masks: HashMap<char, usize> = HashMap::new();
        for (i, c) in pattern.chars().enumerate() {
            length += 1;
            masks
                .entry(c)
                .and_modify(|mask| *mask &= !(1usize << i))
                .or_insert(!(1usize << i));
        }
        if !pattern_length_is_valid(length) {
            return Err(ERR_INVALID_PATTERN);
        }
        Ok(Pattern { length, masks })
    }

    /// Returns the length of the pattern in characters.
    #[inline]
    pub fn len(&self) -> usize {
        self.length
    }

    #[inline]
    fn mask_iter<'a>(&'a self, text: &'a str) -> MaskIterator<'a> {
        MaskIterator {
            masks: &self.masks,
            iter: text.chars(),
        }
    }

    /// Returns an iterator of character indexes where the pattern can be found
    /// within the passed text.
    ///
    /// Unlike `str::matches`, it will find and return overlapping matches.
    ///
    /// ```
    /// use bitap::{Pattern};
    /// let pattern = Pattern::new("world")?;
    /// assert_eq!(pattern.find("hello world").next(), Some(6));
    /// # Ok::<(), &'static str>(())
    /// ```
    pub fn find<'a>(&'a self, text: &'a str) -> impl Iterator<Item = usize> + 'a {
        find(self.mask_iter(text), self.len()).unwrap()
    }

    /// Returns an iterator of matches where the pattern matched the passed
    /// text within a levenshtein distance of `max_distance`.
    ///
    /// ```
    /// use bitap::{Pattern,Match};
    /// let pattern = Pattern::new("wxrld")?;
    /// let m = pattern.lev("hello world", 1).next();
    /// assert_eq!(m, Some(Match{ distance: 1, end: 10 }));
    /// # Ok::<(), &'static str>(())
    /// ```
    pub fn lev<'a>(
        &'a self,
        text: &'a str,
        max_distance: usize,
    ) -> impl Iterator<Item = Match> + 'a {
        levenshtein(self.mask_iter(text), self.len(), max_distance).unwrap()
    }

    /// Returns an iterator of matches where the pattern matched the passed
    /// text within an optimal string alignment distance of `max_distance`.
    ///
    /// ```
    /// use bitap::{Pattern,Match};
    /// let pattern = Pattern::new("wrold")?;
    /// let m = pattern.osa("hello world", 1).next();
    /// assert_eq!(m, Some(Match{ distance: 1, end: 10 }));
    /// # Ok::<(), &'static str>(())
    /// ```
    pub fn osa<'a>(
        &'a self,
        text: &'a str,
        max_distance: usize,
    ) -> impl Iterator<Item = Match> + 'a {
        optimal_string_alignment(self.mask_iter(text), self.len(), max_distance).unwrap()
    }

    /// The same as lev, but optimized for a `max_distance` of 1-2.
    pub fn lev_static<'a>(
        &'a self,
        text: &'a str,
        max_distance: StaticMaxDistance,
    ) -> impl Iterator<Item = Match> + 'a {
        levenshtein_static(self.mask_iter(text), self.len(), max_distance).unwrap()
    }

    /// The same as osa, but optimized for a `max_distance` of 1-2.
    pub fn osa_static<'a>(
        &'a self,
        text: &'a str,
        max_distance: StaticMaxDistance,
    ) -> impl Iterator<Item = Match> + 'a {
        optimal_string_alignment_static(self.mask_iter(text), self.len(), max_distance).unwrap()
    }
}

/// Combines the mask map and an iterator of chars into a stream of pattern masks.
struct MaskIterator<'a> {
    masks: &'a HashMap<char, usize>,
    iter: std::str::Chars<'a>,
}

impl<'a> Iterator for MaskIterator<'a> {
    type Item = usize;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|c| match self.masks.get(&c) {
            Some(m) => *m,
            None => !0usize,
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}