1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//! Submatrix of bits.

use std::slice;
use std::fmt;
use std::iter::Map;
use std::mem;
use std::ops::{Index, IndexMut};
use std::ops::Range;

use super::{Block, BITS};
use row::BitVecSlice;
use util::{div_rem, round_up_to_next};

/// Immutable access to a range of matrix's rows.
pub struct BitSubMatrix<'a> {
    slice: &'a [Block],
    row_bits: usize,
}

/// Mutable access to a range of matrix's rows.
pub struct BitSubMatrixMut<'a> {
    slice: &'a mut [Block],
    row_bits: usize,
}

impl<'a> BitSubMatrix<'a> {
    /// Returns a new BitSubMatrix.
    pub fn new(slice: &[Block], row_bits: usize) -> BitSubMatrix {
        BitSubMatrix {
            slice: slice,
            row_bits: row_bits,
        }
    }

    /// Forms a BitSubMatrix from a pointer and dimensions.
    #[inline]
    pub unsafe fn from_raw_parts(ptr: *const Block, rows: usize, row_bits: usize) -> Self {
        BitSubMatrix {
            slice: slice::from_raw_parts(ptr, round_up_to_next(row_bits, BITS) / BITS * rows),
            row_bits: row_bits,
        }
    }

    /// Iterates over the matrix's rows in the form of mutable slices.
    pub fn iter(&self) -> Map<slice::Chunks<Block>,
                                      fn(&[Block]) -> &BitVecSlice> {
        fn f(arg: &[Block]) -> &BitVecSlice {
            unsafe { mem::transmute(arg) }
        }
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        self.slice.chunks(row_size).map(f)
    }
}

impl<'a> BitSubMatrixMut<'a> {
    /// Returns a new BitSubMatrixMut.
    pub fn new(slice: &mut [Block], row_bits: usize) -> BitSubMatrixMut {
        BitSubMatrixMut {
            slice: slice,
            row_bits: row_bits,
        }
    }

    /// Forms a BitSubMatrix from a pointer and dimensions.
    #[inline]
    pub unsafe fn from_raw_parts(ptr: *mut Block, rows: usize, row_bits: usize) -> Self {
        BitSubMatrixMut {
            slice: slice::from_raw_parts_mut(ptr, round_up_to_next(row_bits, BITS) / BITS * rows),
            row_bits: row_bits,
        }
    }

    /// Returns the number of rows.
    #[inline]
    fn num_rows(&self) -> usize {
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        if row_size == 0 {
            0
        } else {
            self.slice.len() / row_size
        }
    }

    /// Sets the value of a bit.
    ///
    /// # Panics
    ///
    /// Panics if `(row, col)` is out of bounds.
    #[inline]
    pub fn set(&mut self, row: usize, col: usize, enabled: bool) {
        let row_size_in_bits = round_up_to_next(self.row_bits, BITS);
        let bit = row * row_size_in_bits + col;
        let (block, i) = div_rem(bit, BITS);
        assert!(block < self.slice.len() && col < self.row_bits);
        unsafe {
            let elt = self.slice.get_unchecked_mut(block);
            if enabled {
                *elt |= 1 << i;
            } else {
                *elt &= !(1 << i);
            }
        }
    }

    /// Returns a slice of the matrix's rows.
    #[inline]
    pub fn sub_matrix(&self, range: Range<usize>) -> BitSubMatrix {
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        BitSubMatrix {
            slice: &self.slice[range.start * row_size .. range.end * row_size],
            row_bits: self.row_bits,
        }
    }

    /// Given a row's index, returns a slice of all rows above that row, a reference to said row,
    /// and a slice of all rows below.
    ///
    /// Functionally equivalent to `(self.sub_matrix(0..row), &self[row],
    /// self.sub_matrix(row..self.num_rows()))`.
    #[inline]
    pub fn split_at(&self, row: usize)
                    -> (BitSubMatrix,
                        &BitVecSlice,
                        BitSubMatrixMut) {
        unsafe {
            (mem::transmute(self.sub_matrix(0 .. row)),
             mem::transmute(&self[row]),
             mem::transmute(self.sub_matrix(row + 1 .. self.num_rows())))
        }
    }

    /// Given a row's index, returns a slice of all rows above that row, a reference to said row,
    /// and a slice of all rows below.
    #[inline]
    pub fn split_at_mut(&mut self, row: usize)
                        -> (BitSubMatrixMut,
                            &mut BitVecSlice,
                            BitSubMatrixMut) {
        unsafe {
            (mem::transmute(self.sub_matrix(0 .. row)),
             mem::transmute(&mut self[row]),
             mem::transmute(self.sub_matrix(row + 1 .. self.num_rows())))
        }
    }

    /// Computes the transitive closure of the binary relation represented by the matrix.
    ///
    /// Uses the Warshall's algorithm.
    pub fn transitive_closure(&mut self) {
        assert_eq!(self.num_rows(), self.row_bits);
        for pos in 0 .. self.row_bits {
            let (mut rows0, row, mut rows1) = self.split_at_mut(pos);
            for dst_row in rows0.iter_mut().chain(rows1.iter_mut()) {
                if dst_row[pos] {
                    for (dst, src) in dst_row.iter_mut().zip(row.iter()) {
                        *dst |= *src;
                    }
                }
            }
        }
    }

    /// Iterates over the matrix's rows in the form of mutable slices.
    pub fn iter_mut(&mut self) -> Map<slice::ChunksMut<Block>,
                                      fn(&mut [Block]) -> &mut BitVecSlice> {
        fn f(arg: &mut [Block]) -> &mut BitVecSlice {
            unsafe { mem::transmute(arg) }
        }
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        self.slice.chunks_mut(row_size).map(f)
    }
}

/// Returns the matrix's row in the form of a mutable slice.
impl<'a> Index<usize> for BitSubMatrixMut<'a> {
    type Output = BitVecSlice;

    #[inline]
    fn index(&self, row: usize) -> &BitVecSlice {
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        unsafe {
            mem::transmute(
                &self.slice[row * row_size .. (row + 1) * row_size]
            )
        }
    }
}

/// Returns the matrix's row in the form of a mutable slice.
impl<'a> IndexMut<usize> for BitSubMatrixMut<'a> {
    #[inline]
    fn index_mut(&mut self, row: usize) -> &mut BitVecSlice {
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        unsafe {
            mem::transmute(
                &mut self.slice[row * row_size .. (row + 1) * row_size]
            )
        }
    }
}

/// Returns the matrix's row in the form of a mutable slice.
impl<'a> Index<usize> for BitSubMatrix<'a> {
    type Output = BitVecSlice;

    #[inline]
    fn index(&self, row: usize) -> &BitVecSlice {
        let row_size = round_up_to_next(self.row_bits, BITS) / BITS;
        unsafe {
            mem::transmute(
                &self.slice[row * row_size .. (row + 1) * row_size]
            )
        }
    }
}

impl<'a> fmt::Debug for BitSubMatrix<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        for row in self.iter() {
            for bit in row.iter_bits(self.row_bits) {
                try!(write!(fmt, "{}", if bit { 1 } else { 0 }));
            }
            try!(write!(fmt, "\n"));
        }
        Ok(())
    }
}