1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
use super::*;
use std::convert::TryFrom;

impl BddVariableSet {
    /// Create a new `BddVariableSet` with anonymous variables $(x_0, \ldots, x_n)$ where $n$ is
    /// the `num_vars` parameter.
    pub fn new_anonymous(num_vars: u16) -> BddVariableSet {
        if num_vars >= (u16::MAX - 1) {
            panic!(
                "Too many BDD variables. There can be at most {} variables.",
                u16::MAX - 1
            )
        }
        BddVariableSet {
            num_vars,
            var_names: (0..num_vars).map(|i| format!("x_{}", i)).collect(),
            var_index_mapping: (0..num_vars).map(|i| (format!("x_{}", i), i)).collect(),
        }
    }

    /// Create a new `BddVariableSet` with the given named variables. Same as using the
    /// `BddVariablesBuilder` with this name vector, but no `BddVariable` objects are returned.
    ///
    /// *Panics:* `vars` must contain unique names which are allowed as variable names.
    pub fn new(vars: &[&str]) -> BddVariableSet {
        let mut builder = BddVariableSetBuilder::new();
        builder.make_variables(vars);
        builder.build()
    }

    /// Return the number of variables in this set.
    pub fn num_vars(&self) -> u16 {
        self.num_vars
    }

    /// Create a `BddVariable` based on a variable name. If the name does not appear
    /// in this set, return `None`.
    pub fn var_by_name(&self, name: &str) -> Option<BddVariable> {
        self.var_index_mapping.get(name).cloned().map(BddVariable)
    }

    /// Provides a vector of all `BddVariable`s in this set.
    pub fn variables(&self) -> Vec<BddVariable> {
        (0..self.num_vars).map(BddVariable).collect()
    }

    /// Obtain the name of a specific `BddVariable`.
    pub fn name_of(&self, variable: BddVariable) -> String {
        self.var_names[variable.0 as usize].clone()
    }

    /// Create a `Bdd` corresponding to the `true` formula.
    pub fn mk_true(&self) -> Bdd {
        Bdd::mk_true(self.num_vars)
    }

    /// Create a `Bdd` corresponding to the `false` formula.
    pub fn mk_false(&self) -> Bdd {
        Bdd::mk_false(self.num_vars)
    }

    /// Create a `Bdd` corresponding to the $v$ formula where `v` is a specific variable in
    /// this set.
    ///
    /// *Panics:* `var` must be a valid variable in this set.
    pub fn mk_var(&self, var: BddVariable) -> Bdd {
        debug_assert!(var.0 < self.num_vars, "Invalid variable id.");
        Bdd::mk_var(self.num_vars, var)
    }

    /// Create a BDD corresponding to the $\neg v$ formula where `v` is a specific variable in
    /// this set.
    ///
    /// *Panics:* `var` must be a valid variable in this set.
    pub fn mk_not_var(&self, var: BddVariable) -> Bdd {
        debug_assert!(var.0 < self.num_vars, "Invalid variable id.");
        Bdd::mk_not_var(self.num_vars, var)
    }

    /// Create a BDD corresponding to the $v <=> \texttt{value}$ formula.
    ///
    /// *Panics:* `var` must be a valid variable in this set.
    pub fn mk_literal(&self, var: BddVariable, value: bool) -> Bdd {
        debug_assert!(var.0 < self.num_vars, "Invalid variable id.");
        Bdd::mk_literal(self.num_vars, var, value)
    }

    /// Create a BDD corresponding to the $v$ formula where `v` is a variable in this set.
    ///
    /// *Panics:* `var` must be a name of a valid variable in this set.
    pub fn mk_var_by_name(&self, var: &str) -> Bdd {
        self.var_by_name(var)
            .map(|var| self.mk_var(var))
            .unwrap_or_else(|| panic!("Variable {} is not known in this set.", var))
    }

    /// Create a BDD corresponding to the $\neg v$ formula where `v` is a variable in this set.
    ///
    /// *Panics:* `var` must be a name of a valid variable in this set.
    pub fn mk_not_var_by_name(&self, var: &str) -> Bdd {
        self.var_by_name(var)
            .map(|var| self.mk_not_var(var))
            .unwrap_or_else(|| panic!("Variable {} is not known in this set.", var))
    }

    /// Create a `Bdd` corresponding to the conjunction of literals in the given
    /// `BddPartialValuation`.
    ///
    /// For example, given a valuation `x = true`, `y = false` and `z = true`, create
    /// a `Bdd` for the formula `x & !y & z`. An empty valuation evaluates to `true`.
    ///
    /// *Panics:* All variables in the partial valuation must belong into this set.
    pub fn mk_conjunctive_clause(&self, clause: &BddPartialValuation) -> Bdd {
        let mut result = self.mk_true();
        // It is important to iterate in this direction, otherwise we are going to mess with
        // variable ordering.
        for (index, value) in clause.0.iter().enumerate().rev() {
            if let Some(value) = value {
                assert!(index < self.num_vars as usize);
                // This is safe because valuation cannot contain larger indices due to the way
                // it is constructed.
                debug_assert!(u16::try_from(index).is_ok());
                let variable = BddVariable(index as u16);

                let node = if *value {
                    // Value is true, so high link "continues", and low link goes to zero.
                    BddNode::mk_node(variable, BddPointer::zero(), result.root_pointer())
                } else {
                    // Value is false, so low link "continues", and high link goes to zero.
                    BddNode::mk_node(variable, result.root_pointer(), BddPointer::zero())
                };

                result.push_node(node);
            }
        }

        result
    }

    /// Create a `Bdd` corresponding to the disjunction of literals in the given
    /// `BddPartialValuation`.
    ///
    /// For example, given a valuation `x = true`, `y = false` and `z = true`, create
    /// a `Bdd` for the formula `x | !y | z`. An empty valuation evaluates to `false`.
    ///
    /// *Panics:* All variables in the valuation must belong into this set.
    pub fn mk_disjunctive_clause(&self, clause: &BddPartialValuation) -> Bdd {
        // See `mk_conjunctive_clause`, for details.
        if clause.is_empty() {
            return self.mk_false();
        }

        let mut result = self.mk_true();
        // Problem with this algorithm is that in the first iteration, we want to consider
        // zero as the root instead of one. So we use a variable which is pre-set in the
        // first iteration but will evaluate to real root in later iterations.
        let mut shadow_root = BddPointer::zero();
        for (index, value) in clause.0.iter().enumerate().rev() {
            if let Some(value) = value {
                assert!(index < self.num_vars as usize);
                debug_assert!(u16::try_from(index).is_ok());
                let variable = BddVariable(index as u16);

                let node = if *value {
                    BddNode::mk_node(variable, shadow_root, BddPointer::one())
                } else {
                    BddNode::mk_node(variable, BddPointer::one(), shadow_root)
                };

                result.push_node(node);
                shadow_root = result.root_pointer();
            }
        }

        result
    }

    /// Interpret each `BddPartialValuation` in `cnf` as a disjunctive clause, and produce
    /// a conjunction of such clauses. Effectively, this constructs a formula based on its
    /// conjunctive normal form.
    pub fn mk_cnf(&self, cnf: &[BddPartialValuation]) -> Bdd {
        Bdd::mk_cnf(self.num_vars, cnf)
    }

    /// Interpret each `BddPartialValuation` in `dnf` as a conjunctive clause, and produce
    /// a disjunction of such clauses. Effectively, this constructs a formula based on its
    /// disjunctive normal form.
    pub fn mk_dnf(&self, dnf: &[BddPartialValuation]) -> Bdd {
        Bdd::mk_dnf(self.num_vars, dnf)
    }

    /// Build a BDD that is satisfied by all valuations where *up to* $k$ `variables` are `true`.
    ///
    /// Intuitively, this implements a "threshold function" $f(x) = (\sum_{i} x_i \leq k)$
    /// over the given `variables`.
    pub fn mk_sat_up_to_k(&self, k: usize, variables: &[BddVariable]) -> Bdd {
        // This is the same as sat_exactly_k, we just carry the k-1 result over to the next round.
        let mut valuation = BddPartialValuation::empty();
        for var in variables {
            valuation.set_value(*var, false);
        }
        let mut result = self.mk_conjunctive_clause(&valuation);
        for _i in 0..k {
            let mut result_plus_one = result.clone();
            for var in variables {
                let var_is_false = self.mk_not_var(*var);
                // result = result | flip(var, k_minus_one and var_is_false)
                let propagate = Bdd::fused_binary_flip_op(
                    (&result, None),
                    (&var_is_false, None),
                    Some(*var),
                    op_function::and,
                );
                result_plus_one = result_plus_one.or(&propagate);
            }

            result = result_plus_one
        }

        result
    }

    /// Build a BDD that is satisfied by all valuations where *exactly* $k$ `variables` are `true`.
    ///
    /// Intuitively, this implements an "equality function" $f(x) = (\sum_{i} x_i = k)$
    /// over the given `variables`.
    pub fn mk_sat_exactly_k(&self, k: usize, variables: &[BddVariable]) -> Bdd {
        // This is based on the recursion SAT_k = \cup_{v} SAT_{k-1}[flip v].
        let mut valuation = BddPartialValuation::empty();
        for var in variables {
            valuation.set_value(*var, false);
        }
        let mut result = self.mk_conjunctive_clause(&valuation);
        for _i in 0..k {
            let mut result_plus_one = self.mk_false();
            for var in variables {
                let var_is_false = self.mk_not_var(*var);
                // result = result | flip(var, k_minus_one and var_is_false)
                let propagate = Bdd::fused_binary_flip_op(
                    (&result, None),
                    (&var_is_false, None),
                    Some(*var),
                    op_function::and,
                );
                result_plus_one = result_plus_one.or(&propagate);
            }

            result = result_plus_one
        }

        result
    }

    /// This function takes a [Bdd] `bdd` together with its [BddVariableSet] `ctx` and attempts
    /// to translate this `bdd` using the variables of *this* [BddVariableSet].
    ///
    /// In other words, the source and the output [Bdd] are logically equivalent, but each is
    /// valid in its respective [BddVariableSet].
    ///
    /// ### Limitations
    ///
    /// Currently, this method is implemented through "unsafe" variable renaming. I.e. it will
    /// not actually modify the structure of the [Bdd] in any way. As such, the method can fail
    /// (return `None`) when:
    ///   - The `bdd` contains variables that are not present in this [BddVariableSet] (matching
    ///     is performed based on variable names and the support set of `bdd`).
    ///   - The variables used in `bdd` are ordered in a way that is not compatible with this
    ///     [BddVariableSet].
    ///
    pub fn transfer_from(&self, bdd: &Bdd, ctx: &BddVariableSet) -> Option<Bdd> {
        // It's easier to handle constants explicitly.
        if bdd.is_false() {
            return Some(self.mk_false());
        }

        if bdd.is_true() {
            return Some(self.mk_true());
        }

        // Sorted variable IDs that are used in the "old" context.
        let mut old_support_set = bdd.support_set().into_iter().collect::<Vec<_>>();
        old_support_set.sort();

        // Equivalent variable IDs in the "new" context.
        let mut new_support_set = Vec::new();
        for var in &old_support_set {
            let name = ctx.name_of(*var);
            let Some(id) = self.var_by_name(name.as_str()) else {
                // The variable does not exist in the new context.
                return None;
            };
            new_support_set.push(id);
        }

        // Test for ordering validity.
        for i in 1..new_support_set.len() {
            // If x[i] <= x[i-1], then the new vector is not sorted, meaning
            // the variables exist, but cannot be safely renamed in this order.
            if new_support_set[i] <= new_support_set[i - 1] {
                return None;
            }
        }

        // Make a translation map from old to new IDs.
        let map = old_support_set
            .into_iter()
            .zip(new_support_set)
            .collect::<HashMap<_, _>>();

        // Now go through all the non-terminal nodes and copy them to the new BDD
        // using the translated IDs. We don't have to change the links because we are not
        // changing the BDD structure.
        let mut new_bdd = Bdd::mk_true(self.num_vars);
        for node in bdd.nodes().skip(2) {
            let Some(new_var) = map.get(&node.var) else {
                unreachable!()
            };
            let new_node = BddNode::mk_node(*new_var, node.low_link, node.high_link);
            new_bdd.push_node(new_node);
        }

        Some(new_bdd)
    }
}

impl FromIterator<String> for BddVariableSet {
    fn from_iter<T: IntoIterator<Item = String>>(iter: T) -> Self {
        let mut builder = BddVariableSetBuilder::new();
        for var_name in iter {
            builder.make_variable(var_name.as_str());
        }
        builder.build()
    }
}

impl From<Vec<String>> for BddVariableSet {
    fn from(value: Vec<String>) -> Self {
        BddVariableSet::from_iter(value)
    }
}

impl From<Vec<&str>> for BddVariableSet {
    fn from(value: Vec<&str>) -> Self {
        BddVariableSet::from_iter(value.iter().map(|it| it.to_string()))
    }
}

#[cfg(test)]
mod tests {
    use super::_test_util::mk_5_variable_set;
    use super::*;
    use num_bigint::BigInt;

    #[test]
    fn bdd_universe_anonymous() {
        let universe = BddVariableSet::new_anonymous(5);
        assert_eq!(Some(BddVariable(0)), universe.var_by_name("x_0"));
        assert_eq!(Some(BddVariable(1)), universe.var_by_name("x_1"));
        assert_eq!(Some(BddVariable(2)), universe.var_by_name("x_2"));
        assert_eq!(Some(BddVariable(3)), universe.var_by_name("x_3"));
        assert_eq!(Some(BddVariable(4)), universe.var_by_name("x_4"));
    }

    #[test]
    fn bdd_universe_mk_const() {
        let variables = mk_5_variable_set();
        let tt = variables.mk_true();
        let ff = variables.mk_false();
        assert!(tt.is_true());
        assert!(ff.is_false());
        assert_eq!(Bdd::mk_true(5), tt);
        assert_eq!(Bdd::mk_false(5), ff);
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn bdd_universe_mk_var_invalid_id() {
        mk_5_variable_set().mk_var(BddVariable(6));
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)]
    fn bdd_universe_mk_not_var_invalid_id() {
        mk_5_variable_set().mk_not_var(BddVariable(6));
    }

    #[test]
    #[should_panic]
    fn bdd_universe_mk_var_by_name_invalid_name() {
        mk_5_variable_set().mk_var_by_name("abc");
    }

    #[test]
    #[should_panic]
    fn bdd_universe_mk_not_var_by_name_invalid_name() {
        mk_5_variable_set().mk_not_var_by_name("abc");
    }

    #[test]
    fn bdd_mk_clause() {
        let universe = BddVariableSet::new_anonymous(5);
        let variables = universe.variables();

        let valuation = BddPartialValuation::from_values(&[
            (variables[0], true),
            (variables[2], false),
            (variables[4], true),
        ]);

        let con_expected = universe.eval_expression_string("x_0 & !x_2 & x_4");
        let dis_expected = universe.eval_expression_string("x_0 | !x_2 | x_4");

        assert_eq!(con_expected, universe.mk_conjunctive_clause(&valuation));
        assert_eq!(dis_expected, universe.mk_disjunctive_clause(&valuation));
    }

    #[test]
    fn bdd_mk_empty_clause() {
        let universe = BddVariableSet::new_anonymous(5);
        let empty = BddPartialValuation::empty();
        assert_eq!(universe.mk_true(), universe.mk_conjunctive_clause(&empty));
        assert_eq!(universe.mk_false(), universe.mk_disjunctive_clause(&empty));
    }

    #[test]
    #[should_panic]
    fn bdd_mk_conjunctive_clause_fails() {
        let universe = BddVariableSet::new_anonymous(5);
        let valuation = BddPartialValuation::from_values(&[(BddVariable(7), true)]);
        universe.mk_conjunctive_clause(&valuation);
    }

    #[test]
    #[should_panic]
    fn bdd_mk_disjunctive_clause_fails() {
        let universe = BddVariableSet::new_anonymous(5);
        let valuation = BddPartialValuation::from_values(&[(BddVariable(7), true)]);
        universe.mk_conjunctive_clause(&valuation);
    }

    #[test]
    fn bdd_mk_normal_form() {
        let universe = BddVariableSet::new_anonymous(5);
        let variables = universe.variables();

        let cnf_expected =
            universe.eval_expression_string("(x_0 | !x_4) & (x_1 | !x_3 | !x_0) & x_2");
        let dnf_expected =
            universe.eval_expression_string("(x_0 & !x_4) | (x_1 & !x_3 & !x_0) | x_2");
        // just a sanity check that the formulas are non-trivial
        assert!(!cnf_expected.is_true() && !cnf_expected.is_false());
        assert!(!dnf_expected.is_true() && !dnf_expected.is_false());

        let c1 = BddPartialValuation::from_values(&[(variables[0], true), (variables[4], false)]);
        let c2 = BddPartialValuation::from_values(&[
            (variables[1], true),
            (variables[3], false),
            (variables[0], false),
        ]);
        let c3 = BddPartialValuation::from_values(&[(variables[2], true)]);
        let formula = &[c1, c2, c3];
        assert_eq!(cnf_expected, universe.mk_cnf(formula));
        assert_eq!(dnf_expected, universe.mk_dnf(formula));

        assert_eq!(universe.mk_false(), universe.mk_dnf(&[]));
        assert_eq!(
            universe.mk_true(),
            universe.mk_dnf(&[BddPartialValuation::empty()])
        );
        assert_eq!(universe.mk_true(), universe.mk_cnf(&[]));
        assert_eq!(
            universe.mk_false(),
            universe.mk_cnf(&[BddPartialValuation::empty()])
        );

        // x | !x = true
        assert_eq!(
            universe.mk_true(),
            universe.mk_dnf(&[
                BddPartialValuation::from_values(&[(variables[0], true)]),
                BddPartialValuation::from_values(&[(variables[0], false)]),
            ])
        );

        // x & !x = false
        assert_eq!(
            universe.mk_false(),
            universe.mk_cnf(&[
                BddPartialValuation::from_values(&[(variables[0], true)]),
                BddPartialValuation::from_values(&[(variables[0], false)]),
            ])
        );

        // Test the backwards conversion by converting each formula to the inverse normal form.
        let cnf_as_dnf = universe.mk_cnf(formula).to_dnf();
        let dnf_as_cnf = universe.mk_dnf(formula).to_cnf();
        assert_eq!(cnf_expected, universe.mk_dnf(&cnf_as_dnf));
        assert_eq!(dnf_expected, universe.mk_cnf(&dnf_as_cnf));
    }

    #[test]
    fn bdd_mk_sat_k() {
        fn factorial(x: usize) -> usize {
            if x == 0 {
                1
            } else {
                x * factorial(x - 1)
            }
        }

        fn binomial(n: usize, k: usize) -> usize {
            factorial(n) / (factorial(k) * factorial(n - k))
        }

        let vars = BddVariableSet::new_anonymous(5);
        let variables = vars.variables();

        assert_eq!(
            vars.mk_sat_exactly_k(0, &variables).exact_cardinality(),
            BigInt::from(1)
        );
        assert_eq!(
            vars.mk_sat_exactly_k(1, &variables).exact_cardinality(),
            BigInt::from(variables.len())
        );

        let bdd = vars.mk_sat_exactly_k(3, &vars.variables());
        // The number of such valuations is exactly the binomial coefficient.
        assert_eq!(bdd.exact_cardinality(), BigInt::from(binomial(5, 3)));

        let bdd = vars.mk_sat_up_to_k(3, &vars.variables());
        let expected = binomial(5, 3) + binomial(5, 2) + binomial(5, 1) + binomial(5, 0);
        assert_eq!(bdd.exact_cardinality(), BigInt::from(expected));
    }

    #[test]
    fn bdd_transfer() {
        let ctx_1 = BddVariableSet::new(&["a", "b", "x", "c", "y"]);
        let ctx_2 = BddVariableSet::new(&["a", "x", "b", "z", "c"]);

        // Constants.
        assert_eq!(
            ctx_1.mk_false(),
            ctx_1.transfer_from(&ctx_2.mk_false(), &ctx_2).unwrap()
        );
        assert_eq!(
            ctx_1.mk_true(),
            ctx_1.transfer_from(&ctx_2.mk_true(), &ctx_2).unwrap()
        );

        // Valid translation.
        let f1 = ctx_1.eval_expression_string("a & b | !c");
        let f2 = ctx_2.eval_expression_string("a & b | !c");

        assert_eq!(f1, ctx_1.transfer_from(&f2, &ctx_2).unwrap());
        assert_eq!(f2, ctx_2.transfer_from(&f1, &ctx_1).unwrap());

        // Invalid translation: bad variable ordering.
        let f1 = ctx_1.eval_expression_string("a & !b & x | !c");
        assert_eq!(None, ctx_2.transfer_from(&f1, &ctx_1));

        // Invalid translation: missing variable.
        let f1 = ctx_1.eval_expression_string("a & y | !c");
        assert_eq!(None, ctx_2.transfer_from(&f1, &ctx_1));
    }
}