1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright 2014-2016 Johannes Köster.
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

//! A classical, flexible, q-gram index implementation.
//!
//! # Example
//!
//! ```
//! use bio::alphabets;
//! use bio::data_structures::qgram_index;
//!
//! let text = b"ACGGCTGAGATGAT";
//! let alphabet = alphabets::dna::alphabet();
//! let q = 3;
//! let qgram_index = qgram_index::QGramIndex::new(q, text, &alphabet);
//!
//! let pattern = b"GCTG";
//! let matches = qgram_index.matches(pattern, 1);
//! assert_eq!(
//!     matches,
//!     [qgram_index::Match {
//!         pattern: qgram_index::Interval { start: 0, stop: 4 },
//!         text: qgram_index::Interval { start: 3, stop: 7 },
//!         count: 2
//!     }]
//! );
//! ```

use std::cmp;
use std::collections;
use std::collections::hash_map::Entry;

use crate::alphabets::{Alphabet, RankTransform};
use crate::utils;

/// A classical, flexible, q-gram index implementation.
///
/// Uses |alphabet|^q + k words of memory, where k is the number of q-grams in the text with count at most `max_count` (if specified).
#[derive(Default, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Serialize, Deserialize)]
pub struct QGramIndex {
    q: u32,
    // For each q-gram, the position in `pos` where positions for this q-gram are stored.
    address: Vec<usize>,
    // The positions in `text` where each q-gram occurs.
    pos: Vec<usize>,
    ranks: RankTransform,
}

impl QGramIndex {
    /// Create a new q-gram index.
    /// The q has to be smaller than b / log2(|A|) with |A| being the alphabet size and b the number
    /// bits with the `usize` data type.
    pub fn new<'a, T, I>(q: u32, text: T, alphabet: &Alphabet) -> Self
    where
        I: Iterator<Item = &'a u8> + ExactSizeIterator + Clone,
        T: IntoIterator<Item = &'a u8, IntoIter = I> + Sized,
    {
        QGramIndex::with_max_count(q, text, alphabet, std::usize::MAX)
    }

    /// Create a new q-gram index, only considering q-grams that occur at most `max_count` times.
    /// The q has to be smaller than b / log2(|A|) with |A| being the alphabet size and b the number
    /// bits with the `usize` data type.
    pub fn with_max_count<'a, T, I>(q: u32, text: T, alphabet: &Alphabet, max_count: usize) -> Self
    where
        I: Iterator<Item = &'a u8> + ExactSizeIterator + Clone,
        T: IntoIterator<Item = &'a u8, IntoIter = I> + Sized,
    {
        let text = text.into_iter();
        let ranks = RankTransform::new(alphabet);

        let qgram_count = alphabet.len().pow(q as u32);
        let mut address = vec![0; qgram_count + 1];

        for qgram in ranks.qgrams(q, text.clone()) {
            address[qgram] += 1;
        }

        for a in address.iter_mut() {
            if *a > max_count {
                // mask qgram
                *a = 0;
            }
        }

        utils::prescan(&mut address, 0, |a, b| a + b);

        // Address has at least size 1, so unwrap is fine.
        let mut pos = vec![0; *address.last().unwrap()];

        {
            let mut offset = vec![0; qgram_count];
            for (i, qgram) in ranks.qgrams(q, text).enumerate() {
                let a = address[qgram as usize];
                if address[qgram as usize + 1] - a != 0 {
                    // if not masked, insert positions
                    pos[a + offset[qgram as usize]] = i;
                    offset[qgram as usize] += 1;
                }
            }
        }

        QGramIndex {
            q,
            address,
            pos,
            ranks,
        }
    }

    /// The used q.
    pub fn q(&self) -> u32 {
        self.q
    }

    /// Return text positions with matching q-gram. Complexity O(1).
    pub fn qgram_matches(&self, qgram: usize) -> &[usize] {
        &self.pos[self.address[qgram]..self.address[qgram + 1]]
    }

    /// Return matches of the given pattern, matching in at least `min_count` q-grams.
    /// Complexity O(m + k) for pattern of length m and k being the number of matching q-grams.
    ///
    /// A match is a substring of `pattern` and a corresponding substring of the text that share at least `min_count` q-grams.
    pub fn matches(&self, pattern: &[u8], min_count: usize) -> Vec<Match> {
        let q = self.q as usize;
        let mut diagonals = collections::HashMap::new();
        for (i, qgram) in self.ranks.qgrams(self.q, pattern).enumerate() {
            for &p in self.qgram_matches(qgram) {
                let diagonal = p - i;
                match diagonals.entry(diagonal) {
                    Entry::Vacant(v) => {
                        v.insert(Match {
                            pattern: Interval {
                                start: i,
                                stop: i + q,
                            },
                            text: Interval {
                                start: p,
                                stop: p + q,
                            },
                            count: 1,
                        });
                    }
                    Entry::Occupied(mut o) => {
                        let m = o.get_mut();
                        m.pattern.stop = i + q;
                        m.text.stop = p + q;
                        m.count += 1;
                    }
                }
            }
        }
        diagonals
            .into_iter()
            .filter_map(|(_, m)| if m.count >= min_count { Some(m) } else { None })
            .collect()
    }

    /// Return exact matches (substrings) of the given pattern.
    /// Complexity O(m + k) for pattern of length m and k being the number of matching q-grams.
    ///
    /// An exact match is a substring of `pattern` occurring in the text of length at least `q`.
    pub fn exact_matches(&self, pattern: &[u8]) -> Vec<ExactMatch> {
        let q = self.q as usize;
        let mut diagonals = collections::HashMap::new();
        let mut matches = Vec::new();

        for (i, qgram) in self.ranks.qgrams(self.q, pattern).enumerate() {
            for &p in self.qgram_matches(qgram) {
                let diagonal = p as i32 - i as i32;
                match diagonals.entry(diagonal) {
                    Entry::Vacant(v) => {
                        v.insert(ExactMatch {
                            pattern: Interval {
                                start: i,
                                stop: i + q,
                            },
                            text: Interval {
                                start: p,
                                stop: p + q,
                            },
                        });
                    }
                    Entry::Occupied(mut o) => {
                        let m = o.get_mut();
                        if m.pattern.stop - q + 1 != i {
                            // discontinue match
                            matches.push(*m);
                            // start new match
                            m.pattern.start = i;
                            m.text.start = p;
                        }
                        m.pattern.stop = i + q;
                        m.text.stop = p + q;
                    }
                }
            }
        }
        for (_, m) in diagonals {
            matches.push(m);
        }

        matches
    }
}

/// An interval, consisting of start and stop position (the latter exclusive).
#[derive(
    Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Serialize, Deserialize,
)]
pub struct Interval {
    pub start: usize,
    pub stop: usize,
}

impl Interval {
    /// Get the text within the given interval.
    pub fn get<'a>(&self, text: &'a [u8]) -> &'a [u8] {
        &text[self.start..self.stop]
    }
}

/// A match between the pattern and the text.
#[derive(Default, Copy, Clone, Eq, PartialEq, Hash, Debug, Serialize, Deserialize)]
pub struct Match {
    pub pattern: Interval,
    pub text: Interval,
    pub count: usize,
}

impl cmp::Ord for Match {
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.count.cmp(&other.count)
    }
}

impl cmp::PartialOrd for Match {
    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// An exact match between the pattern and the text.
#[derive(
    Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug, Serialize, Deserialize,
)]
pub struct ExactMatch {
    pub pattern: Interval,
    pub text: Interval,
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::alphabets;

    fn setup() -> (&'static [u8], alphabets::Alphabet) {
        let text = b"ACGGCTGAGATGAT";
        let alphabet = alphabets::dna::alphabet();

        (text, alphabet)
    }

    #[test]
    fn test_qgram_matches() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::new(q, text, &alphabet);

        let ranks = alphabets::RankTransform::new(&alphabet);

        let qgram = ranks.qgrams(q, b"TGA").next().unwrap();

        let matches = qgram_index.qgram_matches(qgram);
        assert_eq!(matches, [5, 10]);
    }

    #[test]
    fn test_qgram_with_max_count() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::with_max_count(q, text, &alphabet, 1);

        let ranks = alphabets::RankTransform::new(&alphabet);

        let qgram = ranks.qgrams(q, b"TGA").next().unwrap();

        // Should be pruned because the count of 2 is larger than the max_count of 1.
        let matches = qgram_index.qgram_matches(qgram);
        assert_eq!(matches, []);
    }

    #[test]
    fn test_qgram_with_max_count_index_0() {
        let (_, alphabet) = setup();
        let text = b"AAAAA";
        let q = 3;
        let qgram_index = QGramIndex::with_max_count(q, text, &alphabet, 1);

        let ranks = alphabets::RankTransform::new(&alphabet);

        let qgram = ranks.qgrams(q, b"AAA").next().unwrap();

        // Should be pruned because the count of 3 is larger than the max_count of 1.
        let matches = qgram_index.qgram_matches(qgram);
        assert_eq!(matches, []);
    }

    #[test]
    fn test_qgram_sizeof_pos() {
        let (_, alphabet) = setup();
        let text = b"AAAAA";
        let q = 3;
        let qgram_index = QGramIndex::new(q, text, &alphabet);

        let ranks = alphabets::RankTransform::new(&alphabet);

        let qgram = ranks.qgrams(q, b"AAA").next().unwrap();

        // Should be pruned because the count of 3 is larger than the max_count of 1.
        let matches = qgram_index.qgram_matches(qgram);
        assert_eq!(matches, [0, 1, 2]);
    }

    #[test]
    fn test_matches() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::new(q, text, &alphabet);

        // A fully matching pattern.
        let pattern = b"GCTG";
        let matches = qgram_index.matches(pattern, 1);
        assert_eq!(
            matches,
            [Match {
                pattern: Interval { start: 0, stop: 4 },
                text: Interval { start: 3, stop: 7 },
                count: 2,
            }]
        );

        // A pattern that matches in one position on two disjoint q-grams.
        let pattern = b"GCTAAGA";
        let matches = qgram_index.matches(pattern, 2);
        assert_eq!(
            matches,
            [Match {
                pattern: Interval { start: 0, stop: 7 },
                text: Interval { start: 3, stop: 10 },
                count: 2,
            }]
        );
    }

    #[test]
    fn test_exact_matches() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::new(q, text, &alphabet);

        let pattern = b"GCTGA";
        let exact_matches = qgram_index.exact_matches(pattern);
        assert!(exact_matches.len() == 2);
        for m in exact_matches {
            assert_eq!(m.pattern.get(pattern), m.text.get(text));
        }

        // A pattern that matches in one position on two disjoint q-grams.
        let pattern = b"GCTAAGA";
        let matches = qgram_index.exact_matches(pattern);
        assert_eq!(
            matches,
            [
                ExactMatch {
                    pattern: Interval { start: 0, stop: 3 },
                    text: Interval { start: 3, stop: 6 }
                },
                ExactMatch {
                    pattern: Interval { start: 4, stop: 7 },
                    text: Interval { start: 7, stop: 10 }
                }
            ]
        );
    }

    #[test]
    fn test_exact_matches_self() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::new(q, text, &alphabet);

        let exact_matches = qgram_index.exact_matches(text);
        assert!(!exact_matches.is_empty());
    }

    #[test]
    fn test_iterator() {
        let (text, alphabet) = setup();
        let q = 3;
        let qgram_index = QGramIndex::new(q, text.iter(), &alphabet);

        let exact_matches = qgram_index.exact_matches(text);
        assert!(exact_matches.len() >= 1);
    }

    #[test]
    #[cfg(feature = "nightly")]
    fn test_serde() {
        use serde::{Deserialize, Serialize};
        fn impls_serde_traits<S: Serialize + Deserialize>() {}

        impls_serde_traits::<QGramIndex>();
    }
}