1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
// Copyright 2021, 2022, 2023 Jeff Knaggs
// Licensed under the MIT license (http://opensource.org/licenses/MIT)
// This file may not be copied, modified, or distributed
// except according to those terms.

//! Short sequences of fixed length.
//!
//! Encoded sequences of length `k`, fixed at compile time. Generally, the underlying storage type of `Kmer` should lend itself to optimisation. For example, the default `Kmer` instance is packed into a `usize`, which can be efficiently `Copy`ed on the stack.
//!
//! `k * codec::BITS` must fit in the storage type, e.g. `usize` (64 bits).
//!
//! ```
//! use bio_seq::prelude::*;
//!
//! for (amino_kmer, amino_string) in amino!("SSLMNHKKL")
//!         .kmers::<3>()
//!         .zip(["SSL", "SLM", "LMN", "MNH", "NHK", "HKK", "KKL"])
//!     {
//!         assert_eq!(amino_kmer, amino_string);
//!     }
//! ```
use crate::codec::Codec;
use crate::prelude::{Complement, ParseBioError, ReverseComplement};
use crate::seq::{Seq, SeqSlice};
use crate::{Ba, Bv};
use bitvec::field::BitField;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::marker::PhantomData;
use core::str::FromStr;

#[cfg(feature = "serde")]
use serde_derive::{Deserialize, Serialize};

// TODO
pub trait KmerStorage {
    fn new() -> Self;
}

// TODO
impl KmerStorage for usize {
    fn new() -> Self {
        0
    }
}

/// By default k-mers are backed by `usize`, Codec::BITS * K must be <= 64
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(transparent)]
pub struct Kmer<C: Codec, const K: usize, S: KmerStorage = usize> {
    #[cfg_attr(feature = "serde", serde(skip))]
    pub _p: PhantomData<C>,
    pub bs: S,
}

impl<A: Codec, const K: usize> Kmer<A, K> {
    /// Kmer uses a run-time test to ensure that K is inside bounds. Compile-time
    /// testing requires nightly.
    #[inline]
    fn check_k() {
        assert!(
            K <= usize::BITS as usize / A::BITS,
            "K is too large: it should be <= usize::BITS / A::BITS"
        );
    }

    /// Push a base from the right:
    ///
    /// ```
    /// use bio_seq::prelude::*;
    /// use bio_seq::codec::dna::Dna;
    ///
    /// let k = kmer!("ACGAT");
    /// assert_eq!(k.pushr(Dna::T).to_string(), "CGATT");
    /// ```
    pub fn pushr(self, base: A) -> Kmer<A, K> {
        let bs = &Ba::from(base.into() as usize)[..A::BITS];
        let ba = &Ba::from(self.bs);

        let mut x: Bv = Bv::new();
        x.extend_from_bitslice(&ba[A::BITS..A::BITS * K]);
        x.extend_from_bitslice(bs);
        Kmer {
            _p: PhantomData,
            bs: x.load_le::<usize>(),
        }
    }

    /// Push a base from the left
    pub fn pushl(self, base: A) -> Kmer<A, K> {
        let bs = &Ba::from(base.into() as usize)[..A::BITS];
        let ba = &Ba::from(self.bs);

        let mut x: Bv = Bv::new();
        x.extend_from_bitslice(bs);
        x.extend_from_bitslice(&ba[..A::BITS * K - A::BITS]);
        Kmer {
            _p: PhantomData,
            bs: x.load_le::<usize>(),
        }
    }

    /// Iterate through all bases of a Kmer
    pub fn iter(self) -> KmerBases<A, K> {
        KmerBases {
            _p: PhantomData,
            bits: Ba::from(self.bs),
            index: 0,
        }
    }

    /*
    /// tail
    pub fn tail(self, base: A) -> Seq<A> {
        let bv: Bv::from(self.bs);

        Seq {
            _p: PhantomData,
            bv: bv[A::BITS ..],
        }
    }
    */
}

impl<A: Codec, const K: usize> From<usize> for Kmer<A, K> {
    fn from(i: usize) -> Kmer<A, K> {
        Kmer::<A, K>::check_k();
        Kmer {
            _p: PhantomData,
            bs: i,
        }
    }
}

impl<A: Codec, const K: usize> From<&Kmer<A, K>> for usize {
    fn from(kmer: &Kmer<A, K>) -> usize {
        kmer.bs
    }
}

impl<A: Codec, const K: usize> From<Kmer<A, K>> for usize {
    fn from(kmer: Kmer<A, K>) -> usize {
        kmer.bs
    }
}

impl<A: Codec, const K: usize> fmt::Display for Kmer<A, K> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut s = String::new();
        Ba::from(self.bs)[..K * A::BITS]
            .chunks(A::BITS)
            .for_each(|chunk| {
                s.push_str(
                    &A::unsafe_from_bits(chunk.load_le::<u8>())
                        .to_char()
                        .to_string(),
                );
            });
        write!(f, "{s}")
    }
}

/// An iterator over all kmers of a sequence with a specified length
pub struct KmerIter<'a, A: Codec, const K: usize> {
    pub slice: &'a SeqSlice<A>,
    pub index: usize,
    pub len: usize,
    pub _p: PhantomData<A>,
}

impl<'a, A: Codec, const K: usize> Iterator for KmerIter<'a, A, K> {
    type Item = Kmer<A, K>;
    fn next(&mut self) -> Option<Kmer<A, K>> {
        let i = self.index;
        if self.index + K > self.len {
            return None;
        }
        self.index += 1;
        Some(Kmer::<A, K>::from(&self.slice[i..i + K]))
    }
}

/// An iterator over the bases of a kmer
pub struct KmerBases<A: Codec, const K: usize> {
    pub _p: PhantomData<A>,
    pub bits: Ba,
    pub index: usize,
}

/// An iterator over the bases of a kmer
impl<A: Codec, const K: usize> Iterator for KmerBases<A, K> {
    type Item = A;

    fn next(&mut self) -> Option<A> {
        let i = self.index * A::BITS;
        if self.index >= K {
            return None;
        }
        self.index += 1;
        let chunk = &self.bits[i..i + (A::BITS)];
        Some(A::unsafe_from_bits(chunk.load_le::<u8>()))
    }
}

/// ```
/// use bio_seq::prelude::*;
/// use std::collections::hash_map::DefaultHasher;
/// use std::hash::{Hash, Hasher};
///
/// let mut hasher1 = DefaultHasher::new();
/// kmer!("AAA").hash(&mut hasher1);
/// let hash1 = hasher1.finish();
///
/// let mut hasher2 = DefaultHasher::new();
/// kmer!("AAAA").hash(&mut hasher2);
/// let hash2 = hasher2.finish();
///
/// assert_ne!(hash1, hash2);
/// ```
impl<A: Codec, const K: usize> Hash for Kmer<A, K> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.bs.hash(state);
        K.hash(state);
    }
}

impl<A: Codec, const K: usize> TryFrom<Seq<A>> for Kmer<A, K> {
    type Error = ParseBioError;

    fn try_from(seq: Seq<A>) -> Result<Self, Self::Error> {
        if seq.len() != K {
            Err(ParseBioError {})
        } else {
            Ok(Kmer::<A, K>::from(&seq[0..K]))
        }
    }
}

impl<A: Codec, const K: usize> From<&SeqSlice<A>> for Kmer<A, K> {
    fn from(slice: &SeqSlice<A>) -> Self {
        assert_eq!(K, slice.len());
        Kmer::<A, K>::check_k();
        Kmer {
            _p: PhantomData,
            bs: slice.into(),
        }
    }
}

impl<A: Codec, const K: usize> From<Kmer<A, K>> for String {
    fn from(kmer: Kmer<A, K>) -> Self {
        kmer.to_string()
    }
}

impl<A: Codec, const K: usize> PartialEq<Seq<A>> for Kmer<A, K> {
    fn eq(&self, seq: &Seq<A>) -> bool {
        if seq.len() != K {
            return false;
        }
        &Kmer::<A, K>::from(&seq[..]) == self
    }
}

impl<A: Codec, const K: usize> PartialEq<&str> for Kmer<A, K> {
    fn eq(&self, seq: &&str) -> bool {
        &self.to_string() == seq
    }
}

impl<A: Codec, const K: usize> FromStr for Kmer<A, K> {
    type Err = ParseBioError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.len() != K {
            return Err(ParseBioError {});
        }
        let seq: Seq<A> = Seq::from_str(s)?;
        Kmer::<A, K>::try_from(seq)
    }
}

impl<A: Codec, const K: usize> From<Kmer<A, K>> for Seq<A> {
    fn from(kmer: Kmer<A, K>) -> Self {
        let mut seq: Seq<A> = Seq::with_capacity(K);
        seq.extend(kmer.iter());
        seq
    }
}

impl<A: Codec + Complement, const K: usize> ReverseComplement for Kmer<A, K> {
    type Output = Self;

    fn revcomp(&self) -> Self {
        let seq: Seq<A> = (*self).into();
        let x: usize = seq.revcomp().into();
        Self::from(x)
    }
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;

    #[test]
    fn kmer_to_usize() {
        for (kmer, index) in dna!("AACTT")
            .kmers::<2>()
            .zip([0b00_00, 0b01_00, 0b11_01, 0b11_11])
        {
            assert_eq!(index as usize, (&kmer).into());
        }
    }

    #[test]
    fn pushl_test() {
        let k = kmer!("ACGT");
        let k1 = k.pushl(Dna::G);
        let k2 = k1.pushl(Dna::A);
        let k3 = k2.pushl(Dna::T);
        let k4 = k3.pushl(Dna::C);
        let k5 = k4.pushl(Dna::C);

        assert_eq!(k1, kmer!("GACG"));
        assert_eq!(k2, kmer!("AGAC"));
        assert_eq!(k3, kmer!("TAGA"));
        assert_eq!(k4, kmer!("CTAG"));
        assert_eq!(k5, kmer!("CCTA"));
    }

    #[test]
    fn pushr_test() {
        let k = kmer!("ACGT");
        let k1 = k.pushr(Dna::G);
        let k2 = k1.pushr(Dna::A);
        let k3 = k2.pushr(Dna::T);
        let k4 = k3.pushr(Dna::C);
        let k5 = k4.pushr(Dna::C);

        assert_eq!(k1, kmer!("CGTG"));
        assert_eq!(k2, kmer!("GTGA"));
        assert_eq!(k3, kmer!("TGAT"));
        assert_eq!(k4, kmer!("GATC"));
        assert_eq!(k5, kmer!("ATCC"));
    }

    #[test]
    fn amino_kmer_to_usize() {
        for (kmer, index) in amino!("SRY")
            .kmers::<2>()
            .zip([0b001000_011000, 0b010011_001000])
        {
            assert_eq!(index as usize, (&kmer).into());
        }
    }

    #[test]
    fn big_kmer_shiftr() {
        let mut kmer: Kmer<Dna, 32> = kmer!("AATTTGTGGGTTCGTCTGCGGCTCCGCCCTTA");
        for base in dna!("TACTATGAGGACGATCAGCACCATAAGAACAAA").into_iter() {
            kmer = kmer.pushr(base);
        }
        assert_eq!(kmer!("ACTATGAGGACGATCAGCACCATAAGAACAAA"), kmer);
    }

    #[test]
    fn big_kmer_shiftl() {
        let mut kmer: Kmer<Dna, 32> = kmer!("AATTTGTGGGTTCGTCTGCGGCTCCGCCCTTA");
        for base in dna!("GTACTATGAGGACGATCAGCACCATAAGAACAAA").into_iter() {
            kmer = kmer.pushl(base);
        }
        assert_eq!(kmer!("AAACAAGAATACCACGACTAGCAGGAGTATCA"), kmer);
    }

    #[test]
    fn amino_kmer_iter() {
        for (kmer, target) in amino!("SSLMNHKKL")
            .kmers::<3>()
            .zip(["SSL", "SLM", "LMN", "MNH", "NHK", "HKK", "KKL"])
        {
            assert_eq!(kmer, target);
        }
    }

    #[test]
    fn valid_k_check() {
        Kmer::<Dna, 1>::check_k();
        Kmer::<Amino, 1>::check_k();
        Kmer::<Dna, 32>::check_k();
        Kmer::<Amino, 10>::check_k();
    }

    #[test]
    fn eq_functions() {
        assert_eq!(kmer!("ACGT"), dna!("ACGT"));
        assert_ne!(kmer!("ACGT"), dna!("ACGTA"));
        let kmer: Kmer<Iupac, 4> = Kmer::from_str("ACGT").unwrap();
        assert_eq!(kmer, iupac!("ACGT"));
        assert_ne!(kmer, iupac!("NCGT"));
    }

    #[test]
    fn kmer_iter() {
        let seq: Seq<Dna> = dna!("ACTGA");
        let cs: Vec<Kmer<Dna, 3>> = seq.kmers().collect();
        assert_eq!(cs[0], "ACT");
        assert_eq!(cs[1], "CTG");
        assert_eq!(cs[2], "TGA");
        assert_eq!(cs.len(), 3);
    }

    #[test]
    #[should_panic(expected = "K is too large: it should be <= usize::BITS / A::BITS")]
    fn invalid_k_check() {
        Kmer::<Dna, 33>::check_k();
    }
    #[test]
    #[should_panic(expected = "K is too large: it should be <= usize::BITS / A::BITS")]
    fn invalid_k_check_amino() {
        Kmer::<Amino, 11>::check_k();
    }
    #[test]
    #[should_panic(expected = "K is too large: it should be <= usize::BITS / A::BITS")]
    fn invalid_k_check_dna() {
        Kmer::<Dna, 33>::check_k();
    }

    #[test]
    fn kmer_revcomp() {
        assert_eq!(kmer!("ACGT"), kmer!("ACGT").revcomp());
        assert_ne!(kmer!("GTCGTA"), kmer!("TACGAC"));

        assert_eq!(
            kmer!("ATCGCTATCGATCTGATCGTATATAATATATA"),
            kmer!("TATATATTATATACGATCAGATCGATAGCGAT").revcomp()
        );
    }
}