1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//! A Rust crate for helping write structs as binary data using ✨macro magic✨
//! 
//! # Example:
//!```rust
//! use binwrite::BinWrite;
//!
//! #[derive(BinWrite)]
//! #[binwrite(little)]
//! struct Rect {
//!     x: i32,
//!     y: i32,
//!     #[binwrite(big)]
//!     size: (u16, u16),
//! }
//!
//! fn main() {
//!     let rects = vec![
//!         Rect { x: 1, y: -2, size: (3, 4) },
//!         Rect { x: 20, y: 4, size: (5, 7) }
//!     ];
//!     let mut bytes = vec![];
//!     rects.write(&mut bytes).unwrap();
//!     assert_eq!(
//!         bytes,
//!         vec![
//!         //  [  x (little endian) ]  [  y (little endian) ]  [ size.0 ]  [ size.1 ]
//!             0x01, 0x00, 0x00, 0x00, 0xFE, 0xFF, 0xFF, 0xFF, 0x00, 0x03, 0x00, 0x04,
//!             0x14, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x05, 0x00, 0x07,
//!         ]
//!     );
//! }
//!```

use std::io::{Result, Write};

/// Derive macro for BinWrite. [Usage here](BinWrite).
pub use binwrite_derive::BinWrite;

/// Module for [WriteTrack\<T\>](write_track::WriteTrack)
pub mod write_track;
/// Built-in special writers (example: C strings)
pub mod writers;
mod binwrite_impls;

pub use binwrite_impls::*;

/// A trait providing the ability to write the struct to a writer
///
/// ### Derive-based example:
/// ```rust
/// use binwrite::BinWrite;
///
/// #[derive(BinWrite)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// fn main() {
///     let point = Point { x: 1, y: -2 };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, vec![1, 0, 0, 0, 0xFE, 0xFF, 0xFF, 0xFF]);
/// }
/// ```
///
/// ### Setting Endianness
/// ```rust
/// use binwrite::BinWrite;
///
/// #[derive(BinWrite)]
/// #[binwrite(big)]
/// struct Foo {
///     bar: u32,
///     bar2: i32,
///
///     #[binwrite(little)]
///     bar3: u32,
/// }
///
/// fn main() {
///     let point = Foo {
///         bar: 1,
///         bar2: -2,
///         bar3: 3
///     };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, vec![0, 0, 0, 1, 0xFF, 0xFF, 0xFF, 0xFE, 3, 0, 0, 0]);
/// }
/// ```
///
/// ### Using a preprocessor
/// ```rust
/// use binwrite::BinWrite;
///
/// #[derive(BinWrite)]
/// struct Foo {
///     #[binwrite(preprocessor(u32_to_hex_string))]
///     bar: u32,
///     bar2: String,
/// }
///
/// fn u32_to_hex_string(var: &u32) -> String {
///     format!("{:X}", var)
/// }
///
/// fn main() {
///     let point = Foo {
///         bar: 0xF00D,
///         bar2: String::from(" looks like food")
///     };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, b"F00D looks like food");
/// }
/// ```
///
/// ### Using a custom writer
///
/// For more complicated or more reusable serialization methods, you may want to use a custom
/// writer instead of just preprocessing.
/// ```rust
/// use std::io::{Write, Result};
/// use binwrite::{BinWrite, WriterOption};
///
/// #[derive(BinWrite)]
/// struct Foo {
///     vec_without_len: Vec<u8>,
///     #[binwrite(with(write_vec_with_len), big)]
///     vec_with_len: Vec<u8>,
/// }
///
/// pub fn write_vec_with_len<W, T>(vec: &Vec<T>, writer: &mut W, options: &WriterOption) -> Result<()>
///     where W: Write,
///              T: BinWrite,
/// {
///     BinWrite::write_options(&(vec.len() as u32), writer, options)?;
///     BinWrite::write_options(vec, writer, options)
/// }
///
/// fn main() {
///     let point = Foo {
///         vec_without_len: vec![0, 1, 2, 3],
///         vec_with_len: vec![0, 1, 2, 3],
///     };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, vec![0, 1, 2, 3, 0, 0, 0, 4, 0, 1, 2, 3]);
/// }
/// ```
///
/// ### Built in Writers:
/// Currently supported built in writers:
/// * cstr - "C string" (null terminated string)
/// * utf16 - UTF-16/2 byte wide/Windows string, endianness is used to determine byte order
/// * utf16_null - same as utf16 but with a null terminator
/// * ignore - skip writing this field
/// ```rust
/// use binwrite::BinWrite;
///
/// #[derive(BinWrite)]
/// struct Foo {
///     #[binwrite(cstr)]
///     bar: u32,
///     #[binwrite(cstr)]
///     bar2: String,
///     #[binwrite(ignore)]
///     bar3: u8,
/// }
///
/// fn main() {
///     let point = Foo {
///         bar: 1234,
///         bar2: String::from("this is null terminated"),
///         bar3: 0xFF
///     };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, b"1234\0this is null terminated\0");
/// }
/// ```
///
/// ### Padding/Alignment
/// binwrite also has the ability to align to the nearest X bytes
/// ```rust
/// use binwrite::BinWrite;
///
/// #[derive(BinWrite)]
/// struct Foo {
///     // For tuples/arrays/vecs/slices of types implementing BinWrite work out of the box
///     // and items will just be written in order.
///     bar: [char; 3],
///     // pad specifies the padding before
///     // pad_after specifiers the padding after
///     #[binwrite(align(8), align_after(0x10))]
///     bar2: String,
/// }
///
/// fn main() {
///     let point = Foo {
///         bar: ['a', 'b', 'c'],
///         bar2: String::from("test string")
///     };
///     let mut bytes = vec![];
///
///     point.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, b"abc\0\0\0\0\0test string\0\0\0\0\0\0\0\0\0\0\0\0\0");
/// }
/// ```
/// use `pad` and `pad_after` for fixed amounts of padding.
///
/// ### Advanced Preprocessors
/// Using generics/closures, you can make "configurable" and more reusable preprocessors.
///
/// Example (a configurable "add X before writing"):
/// ```rust
/// use binwrite::BinWrite;
///
/// fn add<T: std::ops::Add<Output = T> + Copy>(lhs: T) -> impl Fn(&T) -> T {
///     move |rhs| lhs + *rhs
/// }
///
/// #[derive(BinWrite)]
/// struct Foo {
///     #[binwrite(preprocessor(add(10)))]
///     bar_u32: u32,
///     #[binwrite(preprocessor(add(-1)))]
///     bar_i64: i64,
/// }
///
/// fn main() {
///     let mut bytes = vec![];
///
///     Foo {
///         bar_u32: 2,
///         bar_i64: 0,
///     }.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, vec![0xCu8, 0, 0, 0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF]);
/// }
/// ```
///
/// ### Postprocessors
///
/// Postprocessors are functions which take a `Vec<u8>` (what would normally be written) and
/// produce any type that implements BinWrite, which is then written in place of the bytes.
/// ```rust
/// use binwrite::BinWrite;
///
/// fn not_crc32(bytes: &Vec<u8>) -> u32 {
///     4
/// }
///
/// fn prepend_crc32(bytes: Vec<u8>) -> (u32, Vec<u8>) {
///     (
///         not_crc32(&bytes),
///         bytes
///     )
/// }
///
/// #[derive(BinWrite)]
/// #[binwrite(big)]
/// struct Foo {
///     #[binwrite(postprocessor(prepend_crc32))]
///     bar: u32,
/// }
///
/// fn main() {
///     let mut bytes = vec![];
///
///     Foo {
///         bar: 2,
///     }.write(&mut bytes).unwrap();
///
///     assert_eq!(bytes, vec![0x0u8, 0, 0, 4, 0, 0, 0, 0x2]);
/// }
/// ```
pub trait BinWrite {
    fn write<W: Write>(&self, writer: &mut W) -> std::io::Result<()> {
        self.write_options(writer, &WriterOption::default())
    }

    fn write_options<W: Write>(&self, writer: &mut W, options: &WriterOption) -> Result<()>;
}

/// An enum to represent what endianness to write with
#[derive(Clone, Copy, Debug)]
pub enum Endian {
    Big,
    Little,
    Native,
}

impl Into<String> for &Endian {
    fn into(self) -> String {
        String::from(
            match self {
                Endian::Big => "Big",
                Endian::Little => "Little",
                Endian::Native => "Native",
            }
        )
    }
}

/// Options on how to write. Use [writer_option_new!](writer_option_new) to create a new
/// instance. Manual initialization is not possible to prevent forward compatibility issues.
#[derive(Default, Clone)]
pub struct WriterOption {
    pub endian: Endian,
    /// A private field to prevent users from creating/destructuring in a non-forwards compatible
    /// manner
    _prevent_creation: ()
}

/// Macro for creating a new writer option, with the idea being a non-verbose means of providing a
/// forwards-compatible set of options which uses default values for all provided options.
#[macro_export] macro_rules! writer_option_new {
    ($($field:ident : $val:expr),*$(,)?) => {
        {
            let mut _writer_option = ::binwrite::WriterOption::default();
            $(
                _writer_option.$field = $val;
            )*
            _writer_option
        }
    }
}

impl Default for Endian {
    fn default() -> Endian {
        Endian::Native
    }
}