1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! A priority queue based on a [binomial heap].
//!
//! See [`BinomialHeap`](struct.BinomialHeap.html) for details.
//!
//! [binomial heap]: https://en.wikipedia.org/wiki/Binomial_heap

#![deny(missing_docs)]

use std::fmt::{self, Debug};
use std::marker::PhantomData;
use std::mem;

mod node;

pub use node::{IntoIter, Iter};

/// A priority queue based on a binomial heap.
///
/// Like [`BinaryHeap`], `BionmialHeap` is an implementation of a priority queue. Unlike
/// `BinaryHeap`, `BionmialHeap` provides an efficient `append` method, at the cost of greater
/// memory usage, slower iteration, and poor cache locality.
///
/// # Time Complexity
///
/// | Operation                      | Time Complexity        |
/// |--------------------------------|------------------------|
/// | [`append`](#method.append)     | `O(log n)` (amortized) |
/// | [`peek`](#method.peek)         | `O(log n)`             |
/// | [`pop`](#method.pop)           | `O(log n)`             |
/// | [`push`](#method.push)         | `O(1)` (amortized)     |
/// | [`push_pop`](#method.push_pop) | `O(log n)`             |
/// | [`replace`](#method.replace)   | `O(log n)`             |
///
/// [`BinaryHeap`]: https://doc.rust-lang.org/std/collections/struct.BinaryHeap.html
#[derive(Clone)]
pub struct BinomialHeap<T: Ord> {
    root: Option<Box<node::Node<T>>>,
    len: usize,
}

impl<T: Ord> BinomialHeap<T> {
    /// Returns a new heap.
    pub fn new() -> Self {
        BinomialHeap { root: None, len: 0 }
    }

    /// Checks if the heap is empty.
    pub fn is_empty(&self) -> bool {
        self.root.is_none()
    }

    /// Returns the number of items in the heap.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns an iterator that yields references to the items in the heap in arbitrary order.
    pub fn iter(&self) -> Iter<T> {
        node::iter(&self.root, self.len)
    }

    /// Returns a reference to the greatest item in the heap.
    ///
    /// Returns `None` if the heap is empty.
    pub fn peek(&self) -> Option<&T> {
        node::peek(&self.root)
    }

    /// Pushes the given item onto the heap.
    pub fn push(&mut self, item: T) {
        node::push(&mut self.root, item);
        self.len += 1;
    }

    /// Moves the given heap's items into the heap, leaving the given heap empty.
    ///
    /// This is equivalent to, but likely to be faster than, the following:
    ///
    /// ```
    /// # let mut heap = binomial_heap::BinomialHeap::<i32>::new();
    /// # let mut heap2 = binomial_heap::BinomialHeap::<i32>::new();
    /// heap.extend(heap2.drain());
    /// ```
    pub fn append(&mut self, other: &mut Self) {
        match self.root {
            None => mem::swap(self, other),
            Some(ref mut root) => {
                node::append(root, other.root.take());
                self.len += mem::replace(&mut other.len, 0);
            }
        }
    }

    /// Pushes the given item onto the heap, then removes the greatest item in the heap and returns
    /// it.
    ///
    /// This method is equivalent to, but likely faster than, the following:
    ///
    /// ```
    /// # let mut heap = binomial_heap::BinomialHeap::new();
    /// # let item = 0;
    /// heap.push(item);
    /// let max = heap.pop().unwrap();
    /// ```
    pub fn push_pop(&mut self, item: T) -> T {
        self.push(item);
        self.pop().expect("heap was empty")
    }

    /// Removes the greatest item in the heap, then pushes the given item onto the heap.
    ///
    /// Returns the item that was removed, or `None` if the heap was empty.
    ///
    /// This method is equivalent to, but likely faster than, the following:
    ///
    /// ```
    /// # let mut heap = binomial_heap::BinomialHeap::new();
    /// # let item = 0;
    /// let max = heap.pop();
    /// heap.push(item);
    /// ```
    pub fn replace(&mut self, item: T) -> Option<T> {
        let max = self.pop();
        self.push(item);
        max
    }

    /// Removes the greatest item in the heap and returns it.
    ///
    /// Returns `None` if the heap was empty.
    ///
    /// If a call to this method is immediately preceded by a call to [`push`], consider using
    /// [`push_pop`] instead. If a call to this method is immediately followed by a call to
    /// [`push`], consider using [`replace`] instead.
    ///
    /// [`push`]: #method.push
    /// [`push_pop`]: #method.push_pop
    /// [`replace`]: #method.replace
    pub fn pop(&mut self) -> Option<T> {
        node::pop(&mut self.root, &mut self.len)
    }

    /// Removes all items from the heap.
    pub fn clear(&mut self) {
        *self = Self::new();
    }

    /// Removes all items from the heap and returns an iterator that yields them in arbitrary
    /// order.
    ///
    /// All items are removed even if the iterator is not exhausted. However, the behavior of
    /// this method is unspecified if the iterator is leaked (e.g. via [`mem::forget`]).
    ///
    /// [`mem::forget`]: https://doc.rust-lang.org/std/mem/fn.forget.html
    pub fn drain(&mut self) -> Drain<T> {
        Drain { iter: mem::replace(self, Self::new()).into_iter(), marker: PhantomData }
    }
}

impl<T: Ord + Debug> Debug for BinomialHeap<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_list().entries(self).finish()
    }
}

impl<T: Ord> Default for BinomialHeap<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: Ord> Extend<T> for BinomialHeap<T> {
    fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
        for item in items { self.push(item); }
    }
}

impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinomialHeap<T> {
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, items: I) {
        for item in items { self.push(*item); }
    }
}

impl<T: Ord> std::iter::FromIterator<T> for BinomialHeap<T> {
    fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
        let mut heap = Self::new();
        heap.extend(items);
        heap
    }
}

impl<'a, T: 'a + Ord + Copy> std::iter::FromIterator<&'a T> for BinomialHeap<T> {
    fn from_iter<I: IntoIterator<Item = &'a T>>(items: I) -> Self {
        let mut heap = Self::new();
        heap.extend(items);
        heap
    }
}

impl<T: Ord> IntoIterator for BinomialHeap<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> IntoIter<T> {
        node::into_iter(self.root, self.len)
    }
}

impl<'a, T: Ord> IntoIterator for &'a BinomialHeap<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

/// An iterator that drains a `BinomialHeap`, yielding its items in arbitrary order.
///
/// Acquire through [`BinomialHeap::drain`](struct.BinomialHeap.html#method.drain).
pub struct Drain<'a, T: 'a> {
    iter: IntoIter<T>,
    marker: PhantomData<&'a mut IntoIter<T>>,
}

impl<'a, T: Ord> Iterator for Drain<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<'a, T: Ord> ExactSizeIterator for Drain<'a, T> {
    fn len(&self) -> usize {
        self.iter.len()
    }
}

#[allow(dead_code)]
fn assert_covariance() {
    fn heap<'a, T: Ord>(heap: BinomialHeap<&'static T>) -> BinomialHeap<&'a T> {
        heap
    }

    fn into_iter<'a, T: Ord>(iter: IntoIter<&'static T>) -> IntoIter<&'a T> {
        iter
    }

    fn iter<'i, 'a, T: Ord>(iter: Iter<'i, &'static T>) -> Iter<'i, &'a T> {
        iter
    }
}