1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use bevy_ecs::system::{Res, ResMut};
use bevy_reflect::Reflect;
use bevy_utils::{tracing::debug, Duration};

use crate::{real::Real, time::Time};

/// The virtual game clock representing game time.
///
/// A specialization of the [`Time`] structure. **For method documentation, see
/// [`Time<Virtual>#impl-Time<Virtual>`].**
///
/// Normally used as `Time<Virtual>`. It is automatically inserted as a resource
/// by [`TimePlugin`](crate::TimePlugin) and updated based on
/// [`Time<Real>`](Real). The virtual clock is automatically set as the default
/// generic [`Time`] resource for the update.
///
/// The virtual clock differs from real time clock in that it can be paused, sped up
/// and slowed down. It also limits how much it can advance in a single update
/// in order to prevent unexpected behavior in cases where updates do not happen
/// at regular intervals (e.g. coming back after the program was suspended a long time).
///
/// The virtual clock can be paused by calling [`pause()`](Time::pause) and
/// unpaused by calling [`unpause()`](Time::unpause). When the game clock is
/// paused [`delta()`](Time::delta) will be zero on each update, and
/// [`elapsed()`](Time::elapsed) will not grow.
/// [`effective_speed()`](Time::effective_speed) will return `0.0`. Calling
/// [`pause()`](Time::pause) will not affect value the [`delta()`](Time::delta)
/// value for the update currently being processed.
///
/// The speed of the virtual clock can be changed by calling
/// [`set_relative_speed()`](Time::set_relative_speed). A value of `2.0` means
/// that virtual clock should advance twice as fast as real time, meaning that
/// [`delta()`](Time::delta) values will be double of what
/// [`Time<Real>::delta()`](Time::delta) reports and
/// [`elapsed()`](Time::elapsed) will go twice as fast as
/// [`Time<Real>::elapsed()`](Time::elapsed). Calling
/// [`set_relative_speed()`](Time::set_relative_speed) will not affect the
/// [`delta()`](Time::delta) value for the update currently being processed.
///
/// The maximum amount of delta time that can be added by a single update can be
/// set by [`set_max_delta()`](Time::set_max_delta). This value serves a dual
/// purpose in the virtual clock.
///
/// If the game temporarily freezes due to any reason, such as disk access, a
/// blocking system call, or operating system level suspend, reporting the full
/// elapsed delta time is likely to cause bugs in game logic. Usually if a
/// laptop is suspended for an hour, it doesn't make sense to try to simulate
/// the game logic for the elapsed hour when resuming. Instead it is better to
/// lose the extra time and pretend a shorter duration of time passed. Setting
/// [`max_delta()`](Time::max_delta) to a relatively short time means that the
/// impact on game logic will be minimal.
///
/// If the game lags for some reason, meaning that it will take a longer time to
/// compute a frame than the real time that passes during the computation, then
/// we would fall behind in processing virtual time. If this situation persists,
/// and computing a frame takes longer depending on how much virtual time has
/// passed, the game would enter a "death spiral" where computing each frame
/// takes longer and longer and the game will appear to freeze. By limiting the
/// maximum time that can be added at once, we also limit the amount of virtual
/// time the game needs to compute for each frame. This means that the game will
/// run slow, and it will run slower than real time, but it will not freeze and
/// it will recover as soon as computation becomes fast again.
///
/// You should set [`max_delta()`](Time::max_delta) to a value that is
/// approximately the minimum FPS your game should have even if heavily lagged
/// for a moment. The actual FPS when lagged will be somewhat lower than this,
/// depending on how much more time it takes to compute a frame compared to real
/// time. You should also consider how stable your FPS is, as the limit will
/// also dictate how big of an FPS drop you can accept without losing time and
/// falling behind real time.
#[derive(Debug, Copy, Clone, Reflect)]
pub struct Virtual {
    max_delta: Duration,
    paused: bool,
    relative_speed: f64,
    effective_speed: f64,
}

impl Time<Virtual> {
    /// The default amount of time that can added in a single update.
    ///
    /// Equal to 250 milliseconds.
    const DEFAULT_MAX_DELTA: Duration = Duration::from_millis(250);

    /// Create new virtual clock with given maximum delta step [`Duration`]
    ///
    /// # Panics
    ///
    /// Panics if `max_delta` is zero.
    pub fn from_max_delta(max_delta: Duration) -> Self {
        let mut ret = Self::default();
        ret.set_max_delta(max_delta);
        ret
    }

    /// Returns the maximum amount of time that can be added to this clock by a
    /// single update, as [`Duration`].
    ///
    /// This is the maximum value [`Self::delta()`] will return and also to
    /// maximum time [`Self::elapsed()`] will be increased by in a single
    /// update.
    ///
    /// This ensures that even if no updates happen for an extended amount of time,
    /// the clock will not have a sudden, huge advance all at once. This also indirectly
    /// limits the maximum number of fixed update steps that can run in a single update.
    ///
    /// The default value is 250 milliseconds.
    #[inline]
    pub fn max_delta(&self) -> Duration {
        self.context().max_delta
    }

    /// Sets the maximum amount of time that can be added to this clock by a
    /// single update, as [`Duration`].
    ///
    /// This is the maximum value [`Self::delta()`] will return and also to
    /// maximum time [`Self::elapsed()`] will be increased by in a single
    /// update.
    ///
    /// This is used to ensure that even if the game freezes for a few seconds,
    /// or is suspended for hours or even days, the virtual clock doesn't
    /// suddenly jump forward for that full amount, which would likely cause
    /// gameplay bugs or having to suddenly simulate all the intervening time.
    ///
    /// If no updates happen for an extended amount of time, this limit prevents
    /// having a sudden, huge advance all at once. This also indirectly limits
    /// the maximum number of fixed update steps that can run in a single
    /// update.
    ///
    /// The default value is 250 milliseconds. If you want to disable this
    /// feature, set the value to [`Duration::MAX`].
    ///
    /// # Panics
    ///
    /// Panics if `max_delta` is zero.
    #[inline]
    pub fn set_max_delta(&mut self, max_delta: Duration) {
        assert_ne!(max_delta, Duration::ZERO, "tried to set max delta to zero");
        self.context_mut().max_delta = max_delta;
    }

    /// Returns the speed the clock advances relative to your system clock, as [`f32`].
    /// This is known as "time scaling" or "time dilation" in other engines.
    #[inline]
    pub fn relative_speed(&self) -> f32 {
        self.relative_speed_f64() as f32
    }

    /// Returns the speed the clock advances relative to your system clock, as [`f64`].
    /// This is known as "time scaling" or "time dilation" in other engines.
    #[inline]
    pub fn relative_speed_f64(&self) -> f64 {
        self.context().relative_speed
    }

    /// Returns the speed the clock advanced relative to your system clock in
    /// this update, as [`f32`].
    ///
    /// Returns `0.0` if the game was paused or what the `relative_speed` value
    /// was at the start of this update.
    #[inline]
    pub fn effective_speed(&self) -> f32 {
        self.context().effective_speed as f32
    }

    /// Returns the speed the clock advanced relative to your system clock in
    /// this update, as [`f64`].
    ///
    /// Returns `0.0` if the game was paused or what the `relative_speed` value
    /// was at the start of this update.
    #[inline]
    pub fn effective_speed_f64(&self) -> f64 {
        self.context().effective_speed
    }

    /// Sets the speed the clock advances relative to your system clock, given as an [`f32`].
    ///
    /// For example, setting this to `2.0` will make the clock advance twice as fast as your system
    /// clock.
    ///
    /// # Panics
    ///
    /// Panics if `ratio` is negative or not finite.
    #[inline]
    pub fn set_relative_speed(&mut self, ratio: f32) {
        self.set_relative_speed_f64(ratio as f64);
    }

    /// Sets the speed the clock advances relative to your system clock, given as an [`f64`].
    ///
    /// For example, setting this to `2.0` will make the clock advance twice as fast as your system
    /// clock.
    ///
    /// # Panics
    ///
    /// Panics if `ratio` is negative or not finite.
    #[inline]
    pub fn set_relative_speed_f64(&mut self, ratio: f64) {
        assert!(ratio.is_finite(), "tried to go infinitely fast");
        assert!(ratio >= 0.0, "tried to go back in time");
        self.context_mut().relative_speed = ratio;
    }

    /// Stops the clock, preventing it from advancing until resumed.
    #[inline]
    pub fn pause(&mut self) {
        self.context_mut().paused = true;
    }

    /// Resumes the clock if paused.
    #[inline]
    pub fn unpause(&mut self) {
        self.context_mut().paused = false;
    }

    /// Returns `true` if the clock is currently paused.
    #[inline]
    pub fn is_paused(&self) -> bool {
        self.context().paused
    }

    /// Returns `true` if the clock was paused at the start of this update.
    #[inline]
    pub fn was_paused(&self) -> bool {
        self.context().effective_speed == 0.0
    }

    /// Updates the elapsed duration of `self` by `raw_delta`, up to the `max_delta`.
    fn advance_with_raw_delta(&mut self, raw_delta: Duration) {
        let max_delta = self.context().max_delta;
        let clamped_delta = if raw_delta > max_delta {
            debug!(
                "delta time larger than maximum delta, clamping delta to {:?} and skipping {:?}",
                max_delta,
                raw_delta - max_delta
            );
            max_delta
        } else {
            raw_delta
        };
        let effective_speed = if self.context().paused {
            0.0
        } else {
            self.context().relative_speed
        };
        let delta = if effective_speed != 1.0 {
            clamped_delta.mul_f64(effective_speed)
        } else {
            // avoid rounding when at normal speed
            clamped_delta
        };
        self.context_mut().effective_speed = effective_speed;
        self.advance_by(delta);
    }
}

impl Default for Virtual {
    fn default() -> Self {
        Self {
            max_delta: Time::<Virtual>::DEFAULT_MAX_DELTA,
            paused: false,
            relative_speed: 1.0,
            effective_speed: 1.0,
        }
    }
}

/// Advances [`Time<Virtual>`] and [`Time`] based on the elapsed [`Time<Real>`].
///
/// The virtual time will be advanced up to the provided [`Time::max_delta`].
pub fn virtual_time_system(
    mut current: ResMut<Time>,
    mut virt: ResMut<Time<Virtual>>,
    real: Res<Time<Real>>,
) {
    let raw_delta = real.delta();
    virt.advance_with_raw_delta(raw_delta);
    *current = virt.as_generic();
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_default() {
        let time = Time::<Virtual>::default();

        assert!(!time.is_paused()); // false
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.max_delta(), Time::<Virtual>::DEFAULT_MAX_DELTA);
        assert_eq!(time.delta(), Duration::ZERO);
        assert_eq!(time.elapsed(), Duration::ZERO);
    }

    #[test]
    fn test_advance() {
        let mut time = Time::<Virtual>::default();

        time.advance_with_raw_delta(Duration::from_millis(125));

        assert_eq!(time.delta(), Duration::from_millis(125));
        assert_eq!(time.elapsed(), Duration::from_millis(125));

        time.advance_with_raw_delta(Duration::from_millis(125));

        assert_eq!(time.delta(), Duration::from_millis(125));
        assert_eq!(time.elapsed(), Duration::from_millis(250));

        time.advance_with_raw_delta(Duration::from_millis(125));

        assert_eq!(time.delta(), Duration::from_millis(125));
        assert_eq!(time.elapsed(), Duration::from_millis(375));

        time.advance_with_raw_delta(Duration::from_millis(125));

        assert_eq!(time.delta(), Duration::from_millis(125));
        assert_eq!(time.elapsed(), Duration::from_millis(500));
    }

    #[test]
    fn test_relative_speed() {
        let mut time = Time::<Virtual>::default();

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 1.0);
        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.elapsed(), Duration::from_millis(250));

        time.set_relative_speed_f64(2.0);

        assert_eq!(time.relative_speed(), 2.0);
        assert_eq!(time.effective_speed(), 1.0);

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert_eq!(time.relative_speed(), 2.0);
        assert_eq!(time.effective_speed(), 2.0);
        assert_eq!(time.delta(), Duration::from_millis(500));
        assert_eq!(time.elapsed(), Duration::from_millis(750));

        time.set_relative_speed_f64(0.5);

        assert_eq!(time.relative_speed(), 0.5);
        assert_eq!(time.effective_speed(), 2.0);

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert_eq!(time.relative_speed(), 0.5);
        assert_eq!(time.effective_speed(), 0.5);
        assert_eq!(time.delta(), Duration::from_millis(125));
        assert_eq!(time.elapsed(), Duration::from_millis(875));
    }

    #[test]
    fn test_pause() {
        let mut time = Time::<Virtual>::default();

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert!(!time.is_paused()); // false
        assert!(!time.was_paused()); // false
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 1.0);
        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.elapsed(), Duration::from_millis(250));

        time.pause();

        assert!(time.is_paused()); // true
        assert!(!time.was_paused()); // false
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 1.0);

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert!(time.is_paused()); // true
        assert!(time.was_paused()); // true
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 0.0);
        assert_eq!(time.delta(), Duration::ZERO);
        assert_eq!(time.elapsed(), Duration::from_millis(250));

        time.unpause();

        assert!(!time.is_paused()); // false
        assert!(time.was_paused()); // true
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 0.0);

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert!(!time.is_paused()); // false
        assert!(!time.was_paused()); // false
        assert_eq!(time.relative_speed(), 1.0);
        assert_eq!(time.effective_speed(), 1.0);
        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.elapsed(), Duration::from_millis(500));
    }

    #[test]
    fn test_max_delta() {
        let mut time = Time::<Virtual>::default();
        time.set_max_delta(Duration::from_millis(500));

        time.advance_with_raw_delta(Duration::from_millis(250));

        assert_eq!(time.delta(), Duration::from_millis(250));
        assert_eq!(time.elapsed(), Duration::from_millis(250));

        time.advance_with_raw_delta(Duration::from_millis(500));

        assert_eq!(time.delta(), Duration::from_millis(500));
        assert_eq!(time.elapsed(), Duration::from_millis(750));

        time.advance_with_raw_delta(Duration::from_millis(750));

        assert_eq!(time.delta(), Duration::from_millis(500));
        assert_eq!(time.elapsed(), Duration::from_millis(1250));

        time.set_max_delta(Duration::from_secs(1));

        assert_eq!(time.max_delta(), Duration::from_secs(1));

        time.advance_with_raw_delta(Duration::from_millis(750));

        assert_eq!(time.delta(), Duration::from_millis(750));
        assert_eq!(time.elapsed(), Duration::from_millis(2000));

        time.advance_with_raw_delta(Duration::from_millis(1250));

        assert_eq!(time.delta(), Duration::from_millis(1000));
        assert_eq!(time.elapsed(), Duration::from_millis(3000));
    }
}