1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#![doc = include_str!("../README.md")]

/// Common run conditions
pub mod common_conditions;
mod fixed;
mod real;
mod stopwatch;
#[allow(clippy::module_inception)]
mod time;
mod timer;
mod virt;

pub use fixed::*;
pub use real::*;
pub use stopwatch::*;
pub use time::*;
pub use timer::*;
pub use virt::*;

pub mod prelude {
    //! The Bevy Time Prelude.
    #[doc(hidden)]
    pub use crate::{Fixed, Real, Time, Timer, TimerMode, Virtual};
}

use bevy_app::{prelude::*, RunFixedMainLoop};
use bevy_ecs::event::{signal_event_update_system, EventUpdateSignal, EventUpdates};
use bevy_ecs::prelude::*;
use bevy_utils::{tracing::warn, Duration, Instant};
pub use crossbeam_channel::TrySendError;
use crossbeam_channel::{Receiver, Sender};

/// Adds time functionality to Apps.
#[derive(Default)]
pub struct TimePlugin;

#[derive(Debug, PartialEq, Eq, Clone, Hash, SystemSet)]
/// Updates the elapsed time. Any system that interacts with [`Time`] component should run after
/// this.
pub struct TimeSystem;

impl Plugin for TimePlugin {
    fn build(&self, app: &mut App) {
        app.init_resource::<Time>()
            .init_resource::<Time<Real>>()
            .init_resource::<Time<Virtual>>()
            .init_resource::<Time<Fixed>>()
            .init_resource::<TimeUpdateStrategy>()
            .register_type::<Time>()
            .register_type::<Time<Real>>()
            .register_type::<Time<Virtual>>()
            .register_type::<Time<Fixed>>()
            .register_type::<Timer>()
            .register_type::<Stopwatch>()
            .add_systems(
                First,
                (time_system, virtual_time_system.after(time_system)).in_set(TimeSystem),
            )
            .add_systems(RunFixedMainLoop, run_fixed_main_schedule);

        // ensure the events are not dropped until `FixedMain` systems can observe them
        app.init_resource::<EventUpdateSignal>()
            .add_systems(
                First,
                bevy_ecs::event::reset_event_update_signal_system.after(EventUpdates),
            )
            .add_systems(FixedPostUpdate, signal_event_update_system);

        #[cfg(feature = "bevy_ci_testing")]
        if let Some(ci_testing_config) = app
            .world
            .get_resource::<bevy_app::ci_testing::CiTestingConfig>()
        {
            if let Some(frame_time) = ci_testing_config.frame_time {
                app.world
                    .insert_resource(TimeUpdateStrategy::ManualDuration(Duration::from_secs_f32(
                        frame_time,
                    )));
            }
        }
    }
}

/// Configuration resource used to determine how the time system should run.
///
/// For most cases, [`TimeUpdateStrategy::Automatic`] is fine. When writing tests, dealing with
/// networking or similar, you may prefer to set the next [`Time`] value manually.
#[derive(Resource, Default)]
pub enum TimeUpdateStrategy {
    /// [`Time`] will be automatically updated each frame using an [`Instant`] sent from the render world via a [`TimeSender`].
    /// If nothing is sent, the system clock will be used instead.
    #[default]
    Automatic,
    /// [`Time`] will be updated to the specified [`Instant`] value each frame.
    /// In order for time to progress, this value must be manually updated each frame.
    ///
    /// Note that the `Time` resource will not be updated until [`TimeSystem`] runs.
    ManualInstant(Instant),
    /// [`Time`] will be incremented by the specified [`Duration`] each frame.
    ManualDuration(Duration),
}

/// Channel resource used to receive time from the render world.
#[derive(Resource)]
pub struct TimeReceiver(pub Receiver<Instant>);

/// Channel resource used to send time from the render world.
#[derive(Resource)]
pub struct TimeSender(pub Sender<Instant>);

/// Creates channels used for sending time between the render world and the main world.
pub fn create_time_channels() -> (TimeSender, TimeReceiver) {
    // bound the channel to 2 since when pipelined the render phase can finish before
    // the time system runs.
    let (s, r) = crossbeam_channel::bounded::<Instant>(2);
    (TimeSender(s), TimeReceiver(r))
}

/// The system used to update the [`Time`] used by app logic. If there is a render world the time is
/// sent from there to this system through channels. Otherwise the time is updated in this system.
fn time_system(
    mut time: ResMut<Time<Real>>,
    update_strategy: Res<TimeUpdateStrategy>,
    time_recv: Option<Res<TimeReceiver>>,
    mut has_received_time: Local<bool>,
) {
    let new_time = if let Some(time_recv) = time_recv {
        // TODO: Figure out how to handle this when using pipelined rendering.
        if let Ok(new_time) = time_recv.0.try_recv() {
            *has_received_time = true;
            new_time
        } else {
            if *has_received_time {
                warn!("time_system did not receive the time from the render world! Calculations depending on the time may be incorrect.");
            }
            Instant::now()
        }
    } else {
        Instant::now()
    };

    match update_strategy.as_ref() {
        TimeUpdateStrategy::Automatic => time.update_with_instant(new_time),
        TimeUpdateStrategy::ManualInstant(instant) => time.update_with_instant(*instant),
        TimeUpdateStrategy::ManualDuration(duration) => time.update_with_duration(*duration),
    }
}

#[cfg(test)]
mod tests {
    use crate::{Fixed, Time, TimePlugin, TimeUpdateStrategy};
    use bevy_app::{App, Startup, Update};
    use bevy_ecs::event::{Event, EventReader, EventWriter};
    use std::error::Error;

    #[derive(Event)]
    struct TestEvent<T: Default> {
        sender: std::sync::mpsc::Sender<T>,
    }

    impl<T: Default> Drop for TestEvent<T> {
        fn drop(&mut self) {
            self.sender
                .send(T::default())
                .expect("Failed to send drop signal");
        }
    }

    #[test]
    fn events_get_dropped_regression_test_11528() -> Result<(), impl Error> {
        let (tx1, rx1) = std::sync::mpsc::channel();
        let (tx2, rx2) = std::sync::mpsc::channel();
        let mut app = App::new();
        app.add_plugins(TimePlugin)
            .add_event::<TestEvent<i32>>()
            .add_event::<TestEvent<()>>()
            .add_systems(Startup, move |mut ev2: EventWriter<TestEvent<()>>| {
                ev2.send(TestEvent {
                    sender: tx2.clone(),
                });
            })
            .add_systems(Update, move |mut ev1: EventWriter<TestEvent<i32>>| {
                // Keep adding events so this event type is processed every update
                ev1.send(TestEvent {
                    sender: tx1.clone(),
                });
            })
            .add_systems(
                Update,
                |mut ev1: EventReader<TestEvent<i32>>, mut ev2: EventReader<TestEvent<()>>| {
                    // Read events so they can be dropped
                    for _ in ev1.read() {}
                    for _ in ev2.read() {}
                },
            )
            .insert_resource(TimeUpdateStrategy::ManualDuration(
                Time::<Fixed>::default().timestep(),
            ));

        for _ in 0..10 {
            app.update();
        }

        // Check event type 1 as been dropped at least once
        let _drop_signal = rx1.try_recv()?;
        // Check event type 2 has been dropped
        rx2.try_recv()
    }
}