1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
use crate::{Extract, ExtractSchedule, Render, RenderApp, RenderSet};
use bevy_app::{App, Plugin};
use bevy_asset::{Asset, AssetEvent, AssetId, Assets};
use bevy_ecs::{
    prelude::*,
    schedule::SystemConfigs,
    system::{StaticSystemParam, SystemParam, SystemParamItem},
};
use bevy_utils::{thiserror::Error, HashMap, HashSet};
use std::marker::PhantomData;

#[derive(Debug, Error)]
pub enum PrepareAssetError<E: Send + Sync + 'static> {
    #[error("Failed to prepare asset")]
    RetryNextUpdate(E),
}

/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`ExtractSchedule`] step the asset is transferred
/// from the "main world" into the "render world".
/// Therefore it is converted into a [`RenderAsset::ExtractedAsset`], which may be the same type
/// as the render asset itself.
///
/// After that in the [`RenderSet::PrepareAssets`] step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset::PreparedAsset`].
pub trait RenderAsset: Asset {
    /// The representation of the asset in the "render world".
    type ExtractedAsset: Send + Sync + 'static;
    /// The GPU-representation of the asset.
    type PreparedAsset: Send + Sync + 'static;
    /// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
    /// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
    type Param: SystemParam;
    /// Converts the asset into a [`RenderAsset::ExtractedAsset`].
    fn extract_asset(&self) -> Self::ExtractedAsset;
    /// Prepares the `extracted asset` for the GPU by transforming it into
    /// a [`RenderAsset::PreparedAsset`]. Therefore ECS data may be accessed via the `param`.
    fn prepare_asset(
        extracted_asset: Self::ExtractedAsset,
        param: &mut SystemParamItem<Self::Param>,
    ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>>;
}

/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`ExtractSchedule`] and
/// [`RenderSet::PrepareAssets`] steps for the specified [`RenderAsset`].
///
/// The `AFTER` generic parameter can be used to specify that `A::prepare_asset` should not be run until
/// `prepare_assets::<AFTER>` has completed. This allows the `prepare_asset` function to depend on another
/// prepared [`RenderAsset`], for example `Mesh::prepare_asset` relies on `RenderAssets::<Image>` for morph
/// targets, so the plugin is created as `RenderAssetPlugin::<Mesh, Image>::default()`.
pub struct RenderAssetPlugin<A: RenderAsset, AFTER: RenderAssetDependency + 'static = ()> {
    phantom: PhantomData<fn() -> (A, AFTER)>,
}

impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Default
    for RenderAssetPlugin<A, AFTER>
{
    fn default() -> Self {
        Self {
            phantom: Default::default(),
        }
    }
}

impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Plugin
    for RenderAssetPlugin<A, AFTER>
{
    fn build(&self, app: &mut App) {
        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app
                .init_resource::<ExtractedAssets<A>>()
                .init_resource::<RenderAssets<A>>()
                .init_resource::<PrepareNextFrameAssets<A>>()
                .add_systems(ExtractSchedule, extract_render_asset::<A>);
            AFTER::register_system(
                render_app,
                prepare_assets::<A>.in_set(RenderSet::PrepareAssets),
            );
        }
    }
}

// helper to allow specifying dependencies between render assets
pub trait RenderAssetDependency {
    fn register_system(render_app: &mut App, system: SystemConfigs);
}

impl RenderAssetDependency for () {
    fn register_system(render_app: &mut App, system: SystemConfigs) {
        render_app.add_systems(Render, system);
    }
}

impl<A: RenderAsset> RenderAssetDependency for A {
    fn register_system(render_app: &mut App, system: SystemConfigs) {
        render_app.add_systems(Render, system.after(prepare_assets::<A>));
    }
}

/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
    extracted: Vec<(AssetId<A>, A::ExtractedAsset)>,
    removed: Vec<AssetId<A>>,
}

impl<A: RenderAsset> Default for ExtractedAssets<A> {
    fn default() -> Self {
        Self {
            extracted: Default::default(),
            removed: Default::default(),
        }
    }
}

/// Stores all GPU representations ([`RenderAsset::PreparedAssets`](RenderAsset::PreparedAsset))
/// of [`RenderAssets`](RenderAsset) as long as they exist.
#[derive(Resource)]
pub struct RenderAssets<A: RenderAsset>(HashMap<AssetId<A>, A::PreparedAsset>);

impl<A: RenderAsset> Default for RenderAssets<A> {
    fn default() -> Self {
        Self(Default::default())
    }
}

impl<A: RenderAsset> RenderAssets<A> {
    pub fn get(&self, id: impl Into<AssetId<A>>) -> Option<&A::PreparedAsset> {
        self.0.get(&id.into())
    }

    pub fn get_mut(&mut self, id: impl Into<AssetId<A>>) -> Option<&mut A::PreparedAsset> {
        self.0.get_mut(&id.into())
    }

    pub fn insert(
        &mut self,
        id: impl Into<AssetId<A>>,
        value: A::PreparedAsset,
    ) -> Option<A::PreparedAsset> {
        self.0.insert(id.into(), value)
    }

    pub fn remove(&mut self, id: impl Into<AssetId<A>>) -> Option<A::PreparedAsset> {
        self.0.remove(&id.into())
    }

    pub fn iter(&self) -> impl Iterator<Item = (AssetId<A>, &A::PreparedAsset)> {
        self.0.iter().map(|(k, v)| (*k, v))
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = (AssetId<A>, &mut A::PreparedAsset)> {
        self.0.iter_mut().map(|(k, v)| (*k, v))
    }
}

/// This system extracts all created or modified assets of the corresponding [`RenderAsset`] type
/// into the "render world".
fn extract_render_asset<A: RenderAsset>(
    mut commands: Commands,
    mut events: Extract<EventReader<AssetEvent<A>>>,
    assets: Extract<Res<Assets<A>>>,
) {
    let mut changed_assets = HashSet::default();
    let mut removed = Vec::new();
    for event in events.read() {
        match event {
            AssetEvent::Added { id } | AssetEvent::Modified { id } => {
                changed_assets.insert(*id);
            }
            AssetEvent::Removed { id } => {
                changed_assets.remove(id);
                removed.push(*id);
            }
            AssetEvent::LoadedWithDependencies { .. } => {
                // TODO: handle this
            }
        }
    }

    let mut extracted_assets = Vec::new();
    for id in changed_assets.drain() {
        if let Some(asset) = assets.get(id) {
            extracted_assets.push((id, asset.extract_asset()));
        }
    }

    commands.insert_resource(ExtractedAssets {
        extracted: extracted_assets,
        removed,
    });
}

// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
    assets: Vec<(AssetId<A>, A::ExtractedAsset)>,
}

impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
    fn default() -> Self {
        Self {
            assets: Default::default(),
        }
    }
}

/// This system prepares all assets of the corresponding [`RenderAsset`] type
/// which where extracted this frame for the GPU.
pub fn prepare_assets<R: RenderAsset>(
    mut extracted_assets: ResMut<ExtractedAssets<R>>,
    mut render_assets: ResMut<RenderAssets<R>>,
    mut prepare_next_frame: ResMut<PrepareNextFrameAssets<R>>,
    param: StaticSystemParam<<R as RenderAsset>::Param>,
) {
    let mut param = param.into_inner();
    let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
    for (id, extracted_asset) in queued_assets {
        match R::prepare_asset(extracted_asset, &mut param) {
            Ok(prepared_asset) => {
                render_assets.insert(id, prepared_asset);
            }
            Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
                prepare_next_frame.assets.push((id, extracted_asset));
            }
        }
    }

    for removed in std::mem::take(&mut extracted_assets.removed) {
        render_assets.remove(removed);
    }

    for (id, extracted_asset) in std::mem::take(&mut extracted_assets.extracted) {
        match R::prepare_asset(extracted_asset, &mut param) {
            Ok(prepared_asset) => {
                render_assets.insert(id, prepared_asset);
            }
            Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
                prepare_next_frame.assets.push((id, extracted_asset));
            }
        }
    }
}