1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
use bevy_ecs::{component::Component, prelude::Entity, reflect::ReflectComponent};
use bevy_math::{Mat4, Vec3, Vec3A, Vec4, Vec4Swizzles};
use bevy_reflect::Reflect;
use bevy_utils::HashMap;

/// An axis-aligned bounding box.
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Aabb {
    pub center: Vec3A,
    pub half_extents: Vec3A,
}

impl Aabb {
    #[inline]
    pub fn from_min_max(minimum: Vec3, maximum: Vec3) -> Self {
        let minimum = Vec3A::from(minimum);
        let maximum = Vec3A::from(maximum);
        let center = 0.5 * (maximum + minimum);
        let half_extents = 0.5 * (maximum - minimum);
        Self {
            center,
            half_extents,
        }
    }

    /// Calculate the relative radius of the AABB with respect to a plane
    #[inline]
    pub fn relative_radius(&self, p_normal: &Vec3A, axes: &[Vec3A]) -> f32 {
        // NOTE: dot products on Vec3A use SIMD and even with the overhead of conversion are net faster than Vec3
        let half_extents = self.half_extents;
        Vec3A::new(
            p_normal.dot(axes[0]),
            p_normal.dot(axes[1]),
            p_normal.dot(axes[2]),
        )
        .abs()
        .dot(half_extents)
    }

    #[inline]
    pub fn min(&self) -> Vec3A {
        self.center - self.half_extents
    }

    #[inline]
    pub fn max(&self) -> Vec3A {
        self.center + self.half_extents
    }
}

impl From<Sphere> for Aabb {
    #[inline]
    fn from(sphere: Sphere) -> Self {
        Self {
            center: sphere.center,
            half_extents: Vec3A::splat(sphere.radius),
        }
    }
}

#[derive(Clone, Debug, Default)]
pub struct Sphere {
    pub center: Vec3A,
    pub radius: f32,
}

impl Sphere {
    #[inline]
    pub fn intersects_obb(&self, aabb: &Aabb, local_to_world: &Mat4) -> bool {
        let aabb_center_world = *local_to_world * aabb.center.extend(1.0);
        let axes = [
            Vec3A::from(local_to_world.x_axis),
            Vec3A::from(local_to_world.y_axis),
            Vec3A::from(local_to_world.z_axis),
        ];
        let v = Vec3A::from(aabb_center_world) - self.center;
        let d = v.length();
        let relative_radius = aabb.relative_radius(&(v / d), &axes);
        d < self.radius + relative_radius
    }
}

/// A bisecting plane that partitions 3D space into two regions.
///
/// Each instance of this type is characterized by the bisecting plane's unit normal and distance from the origin along the normal.
/// Any point `p` is considered to be within the `HalfSpace` when the distance is positive,
/// meaning: if the equation `n.p + d > 0` is satisfied.
#[derive(Clone, Copy, Debug, Default)]
pub struct HalfSpace {
    normal_d: Vec4,
}

impl HalfSpace {
    /// Constructs a `HalfSpace` from a 4D vector whose first 3 components
    /// represent the bisecting plane's unit normal, and the last component signifies
    /// the distance from the origin to the plane along the normal.
    /// The constructor ensures the normal vector is normalized and the distance is appropriately scaled.
    #[inline]
    pub fn new(normal_d: Vec4) -> Self {
        Self {
            normal_d: normal_d * normal_d.xyz().length_recip(),
        }
    }

    /// Returns the unit normal vector of the bisecting plane that characterizes the `HalfSpace`.
    #[inline]
    pub fn normal(&self) -> Vec3A {
        Vec3A::from(self.normal_d)
    }

    /// Returns the distance from the origin to the bisecting plane along the plane's unit normal vector.
    /// This distance helps determine the position of a point `p` on the bisecting plane, as per the equation `n.p + d = 0`.
    #[inline]
    pub fn d(&self) -> f32 {
        self.normal_d.w
    }

    /// Returns the bisecting plane's unit normal vector and the distance from the origin to the plane.
    #[inline]
    pub fn normal_d(&self) -> Vec4 {
        self.normal_d
    }
}

/// A frustum made up of the 6 defining half spaces.
/// Half spaces are ordered left, right, top, bottom, near, far.
/// The normal vectors of the half spaces point towards the interior of the frustum.
#[derive(Component, Clone, Copy, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct Frustum {
    #[reflect(ignore)]
    pub half_spaces: [HalfSpace; 6],
}

impl Frustum {
    /// Returns a frustum derived from `view_projection`.
    #[inline]
    pub fn from_view_projection(view_projection: &Mat4) -> Self {
        let mut frustum = Frustum::from_view_projection_no_far(view_projection);
        frustum.half_spaces[5] = HalfSpace::new(view_projection.row(2));
        frustum
    }

    /// Returns a frustum derived from `view_projection`,
    /// but with a custom far plane.
    #[inline]
    pub fn from_view_projection_custom_far(
        view_projection: &Mat4,
        view_translation: &Vec3,
        view_backward: &Vec3,
        far: f32,
    ) -> Self {
        let mut frustum = Frustum::from_view_projection_no_far(view_projection);
        let far_center = *view_translation - far * *view_backward;
        frustum.half_spaces[5] =
            HalfSpace::new(view_backward.extend(-view_backward.dot(far_center)));
        frustum
    }

    // NOTE: This approach of extracting the frustum half-space from the view
    // projection matrix is from Foundations of Game Engine Development 2
    // Rendering by Lengyel.
    /// Returns a frustum derived from `view_projection`,
    /// without a far plane.
    fn from_view_projection_no_far(view_projection: &Mat4) -> Self {
        let row3 = view_projection.row(3);
        let mut half_spaces = [HalfSpace::default(); 6];
        for (i, half_space) in half_spaces.iter_mut().enumerate().take(5) {
            let row = view_projection.row(i / 2);
            *half_space = HalfSpace::new(if (i & 1) == 0 && i != 4 {
                row3 + row
            } else {
                row3 - row
            });
        }
        Self { half_spaces }
    }

    /// Checks if a sphere intersects the frustum.
    #[inline]
    pub fn intersects_sphere(&self, sphere: &Sphere, intersect_far: bool) -> bool {
        let sphere_center = sphere.center.extend(1.0);
        let max = if intersect_far { 6 } else { 5 };
        for half_space in &self.half_spaces[..max] {
            if half_space.normal_d().dot(sphere_center) + sphere.radius <= 0.0 {
                return false;
            }
        }
        true
    }

    /// Checks if an Oriented Bounding Box (obb) intersects the frustum.
    #[inline]
    pub fn intersects_obb(
        &self,
        aabb: &Aabb,
        model_to_world: &Mat4,
        intersect_near: bool,
        intersect_far: bool,
    ) -> bool {
        let aabb_center_world = model_to_world.transform_point3a(aabb.center).extend(1.0);
        let axes = [
            Vec3A::from(model_to_world.x_axis),
            Vec3A::from(model_to_world.y_axis),
            Vec3A::from(model_to_world.z_axis),
        ];

        for (idx, half_space) in self.half_spaces.into_iter().enumerate() {
            if idx == 4 && !intersect_near {
                continue;
            }
            if idx == 5 && !intersect_far {
                continue;
            }
            let p_normal = half_space.normal();
            let relative_radius = aabb.relative_radius(&p_normal, &axes);
            if half_space.normal_d().dot(aabb_center_world) + relative_radius <= 0.0 {
                return false;
            }
        }
        true
    }
}

#[derive(Component, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CubemapFrusta {
    #[reflect(ignore)]
    pub frusta: [Frustum; 6],
}

impl CubemapFrusta {
    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Frustum> {
        self.frusta.iter()
    }
    pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Frustum> {
        self.frusta.iter_mut()
    }
}

#[derive(Component, Debug, Default, Reflect)]
#[reflect(Component)]
pub struct CascadesFrusta {
    #[reflect(ignore)]
    pub frusta: HashMap<Entity, Vec<Frustum>>,
}

#[cfg(test)]
mod tests {
    use super::*;

    // A big, offset frustum
    fn big_frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 7.7611)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 4.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 2.9104)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 4.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 2.9104)),
                HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, -1.9403)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_big_frustum_outside() {
        // Sphere outside frustum
        let frustum = big_frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.9167, 0.0000, 0.0000),
            radius: 0.7500,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_big_frustum_intersect() {
        // Sphere intersects frustum boundary
        let frustum = big_frustum();
        let sphere = Sphere {
            center: Vec3A::new(7.9288, 0.0000, 2.9728),
            radius: 2.0000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    // A frustum
    fn frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9701, -0.2425, -0.0000, 0.7276)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 1.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, -0.9701, 0.7276)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 1.0000)),
                HalfSpace::new(Vec4::new(-0.0000, -0.2425, 0.9701, 0.7276)),
                HalfSpace::new(Vec4::new(0.9701, -0.2425, -0.0000, 0.7276)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_frustum_surrounding() {
        // Sphere surrounds frustum
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.0000),
            radius: 3.0000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_contained() {
        // Sphere is contained in frustum
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.0000),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_plane() {
        // Sphere intersects a plane
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(0.0000, 0.0000, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_2_planes() {
        // Sphere intersects 2 planes
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(1.2037, 0.0000, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_intersects_3_planes() {
        // Sphere intersects 3 planes
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(1.2037, -1.0988, 0.9695),
            radius: 0.7000,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_frustum_dodges_1_plane() {
        // Sphere avoids intersecting the frustum by 1 plane
        let frustum = frustum();
        let sphere = Sphere {
            center: Vec3A::new(-1.7020, 0.0000, 0.0000),
            radius: 0.7000,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    // A long frustum.
    fn long_frustum() -> Frustum {
        Frustum {
            half_spaces: [
                HalfSpace::new(Vec4::new(-0.9998, -0.0222, -0.0000, -1.9543)),
                HalfSpace::new(Vec4::new(-0.0000, 1.0000, -0.0000, 45.1249)),
                HalfSpace::new(Vec4::new(-0.0000, -0.0168, -0.9999, 2.2718)),
                HalfSpace::new(Vec4::new(-0.0000, -1.0000, -0.0000, 45.1249)),
                HalfSpace::new(Vec4::new(-0.0000, -0.0168, 0.9999, 2.2718)),
                HalfSpace::new(Vec4::new(0.9998, -0.0222, -0.0000, 7.9528)),
            ],
        }
    }

    #[test]
    fn intersects_sphere_long_frustum_outside() {
        // Sphere outside frustum
        let frustum = long_frustum();
        let sphere = Sphere {
            center: Vec3A::new(-4.4889, 46.9021, 0.0000),
            radius: 0.7500,
        };
        assert!(!frustum.intersects_sphere(&sphere, true));
    }

    #[test]
    fn intersects_sphere_long_frustum_intersect() {
        // Sphere intersects frustum boundary
        let frustum = long_frustum();
        let sphere = Sphere {
            center: Vec3A::new(-4.9957, 0.0000, -0.7396),
            radius: 4.4094,
        };
        assert!(frustum.intersects_sphere(&sphere, true));
    }
}