1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
use bevy::prelude::*;
use std::collections::HashMap;
use std::sync::RwLock;

use rapier::prelude::{
    CCDSolver, ColliderHandle, ColliderSet, EventHandler, FeatureId, ImpulseJointHandle,
    ImpulseJointSet, IntegrationParameters, IslandManager, MultibodyJointHandle, MultibodyJointSet,
    NarrowPhase, PhysicsHooks, PhysicsPipeline, QueryFilter as RapierQueryFilter, QueryPipeline,
    Ray, Real, RigidBodyHandle, RigidBodySet,
};

use crate::geometry::{Collider, PointProjection, RayIntersection, ShapeCastHit};
use crate::math::{Rot, Vect};
use crate::pipeline::{CollisionEvent, ContactForceEvent, EventQueue, QueryFilter};
use bevy::prelude::{Entity, EventWriter, GlobalTransform, Query};

use crate::control::{CharacterCollision, MoveShapeOptions, MoveShapeOutput};
use crate::dynamics::TransformInterpolation;
use crate::parry::query::details::ShapeCastOptions;
use crate::plugin::configuration::{SimulationToRenderTime, TimestepMode};
use crate::prelude::{CollisionGroups, RapierRigidBodyHandle};
use rapier::control::CharacterAutostep;
use rapier::geometry::DefaultBroadPhase;

/// The Rapier context, containing all the state of the physics engine.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Resource)]
pub struct RapierContext {
    /// The island manager, which detects what object is sleeping
    /// (not moving much) to reduce computations.
    pub islands: IslandManager,
    /// The broad-phase, which detects potential contact pairs.
    pub broad_phase: DefaultBroadPhase,
    /// The narrow-phase, which computes contact points, tests intersections,
    /// and maintain the contact and intersection graphs.
    pub narrow_phase: NarrowPhase,
    /// The set of rigid-bodies part of the simulation.
    pub bodies: RigidBodySet,
    /// The set of colliders part of the simulation.
    pub colliders: ColliderSet,
    /// The set of impulse joints part of the simulation.
    pub impulse_joints: ImpulseJointSet,
    /// The set of multibody joints part of the simulation.
    pub multibody_joints: MultibodyJointSet,
    /// The solver, which handles Continuous Collision Detection (CCD).
    pub ccd_solver: CCDSolver,
    /// The physics pipeline, which advance the simulation step by step.
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub pipeline: PhysicsPipeline,
    /// The query pipeline, which performs scene queries (ray-casting, point projection, etc.)
    pub query_pipeline: QueryPipeline,
    /// The integration parameters, controlling various low-level coefficient of the simulation.
    pub integration_parameters: IntegrationParameters,
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) event_handler: Option<Box<dyn EventHandler>>,
    // For transform change detection.
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) last_body_transform_set: HashMap<RigidBodyHandle, GlobalTransform>,
    // NOTE: these maps are needed to handle despawning.
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) entity2body: HashMap<Entity, RigidBodyHandle>,
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) entity2collider: HashMap<Entity, ColliderHandle>,
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) entity2impulse_joint: HashMap<Entity, ImpulseJointHandle>,
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) entity2multibody_joint: HashMap<Entity, MultibodyJointHandle>,
    // This maps the handles of colliders that have been deleted since the last
    // physics update, to the entity they was attached to.
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) deleted_colliders: HashMap<ColliderHandle, Entity>,
    #[cfg_attr(feature = "serde-serialize", serde(skip))]
    pub(crate) character_collisions_collector: Vec<rapier::control::CharacterCollision>,
}

impl Default for RapierContext {
    fn default() -> Self {
        Self {
            islands: IslandManager::new(),
            broad_phase: DefaultBroadPhase::new(),
            narrow_phase: NarrowPhase::new(),
            bodies: RigidBodySet::new(),
            colliders: ColliderSet::new(),
            impulse_joints: ImpulseJointSet::new(),
            multibody_joints: MultibodyJointSet::new(),
            ccd_solver: CCDSolver::new(),
            pipeline: PhysicsPipeline::new(),
            query_pipeline: QueryPipeline::new(),
            integration_parameters: IntegrationParameters::default(),
            event_handler: None,
            last_body_transform_set: HashMap::new(),
            entity2body: HashMap::new(),
            entity2collider: HashMap::new(),
            entity2impulse_joint: HashMap::new(),
            entity2multibody_joint: HashMap::new(),
            deleted_colliders: HashMap::new(),
            character_collisions_collector: vec![],
        }
    }
}

impl RapierContext {
    /// If the collider attached to `entity` is attached to a rigid-body, this
    /// returns the `Entity` containing that rigid-body.
    pub fn collider_parent(&self, entity: Entity) -> Option<Entity> {
        self.entity2collider
            .get(&entity)
            .and_then(|h| self.colliders.get(*h))
            .and_then(|co| co.parent())
            .and_then(|h| self.rigid_body_entity(h))
    }

    /// If entity is a rigid-body, this returns the collider `Entity`s attached
    /// to that rigid-body.
    pub fn rigid_body_colliders(&self, entity: Entity) -> impl Iterator<Item = Entity> + '_ {
        self.entity2body()
            .get(&entity)
            .and_then(|handle| self.bodies.get(*handle))
            .map(|body| {
                body.colliders()
                    .iter()
                    .filter_map(|handle| self.collider_entity(*handle))
            })
            .into_iter()
            .flatten()
    }

    /// Retrieve the Bevy entity the given Rapier collider (identified by its handle) is attached.
    pub fn collider_entity(&self, handle: ColliderHandle) -> Option<Entity> {
        Self::collider_entity_with_set(&self.colliders, handle)
    }

    // Mostly used to avoid borrowing self completely.
    pub(crate) fn collider_entity_with_set(
        colliders: &ColliderSet,
        handle: ColliderHandle,
    ) -> Option<Entity> {
        colliders
            .get(handle)
            .map(|c| Entity::from_bits(c.user_data as u64))
    }

    /// Retrieve the Bevy entity the given Rapier rigid-body (identified by its handle) is attached.
    pub fn rigid_body_entity(&self, handle: RigidBodyHandle) -> Option<Entity> {
        self.bodies
            .get(handle)
            .map(|c| Entity::from_bits(c.user_data as u64))
    }

    /// Calls the closure `f` once after converting the given [`QueryFilter`] into a raw `rapier::QueryFilter`.
    pub fn with_query_filter<T>(
        &self,
        filter: QueryFilter,
        f: impl FnOnce(RapierQueryFilter) -> T,
    ) -> T {
        Self::with_query_filter_elts(
            &self.entity2collider,
            &self.entity2body,
            &self.colliders,
            filter,
            f,
        )
    }

    /// Without borrowing the [`RapierContext`], calls the closure `f` once
    /// after converting the given [`QueryFilter`] into a raw `rapier::QueryFilter`.
    pub fn with_query_filter_elts<T>(
        entity2collider: &HashMap<Entity, ColliderHandle>,
        entity2body: &HashMap<Entity, RigidBodyHandle>,
        colliders: &ColliderSet,
        filter: QueryFilter,
        f: impl FnOnce(RapierQueryFilter) -> T,
    ) -> T {
        let mut rapier_filter = RapierQueryFilter {
            flags: filter.flags,
            groups: filter.groups.map(CollisionGroups::into),
            exclude_collider: filter
                .exclude_collider
                .and_then(|c| entity2collider.get(&c).copied()),
            exclude_rigid_body: filter
                .exclude_rigid_body
                .and_then(|b| entity2body.get(&b).copied()),
            predicate: None,
        };

        if let Some(predicate) = filter.predicate {
            let wrapped_predicate = |h: ColliderHandle, _: &rapier::geometry::Collider| {
                Self::collider_entity_with_set(colliders, h)
                    .map(predicate)
                    .unwrap_or(false)
            };
            rapier_filter.predicate = Some(&wrapped_predicate);
            f(rapier_filter)
        } else {
            f(rapier_filter)
        }
    }

    /// Advance the simulation, based on the given timestep mode.
    #[allow(clippy::too_many_arguments)]
    pub fn step_simulation(
        &mut self,
        gravity: Vect,
        timestep_mode: TimestepMode,
        events: Option<(EventWriter<CollisionEvent>, EventWriter<ContactForceEvent>)>,
        hooks: &dyn PhysicsHooks,
        time: &Time,
        sim_to_render_time: &mut SimulationToRenderTime,
        mut interpolation_query: Option<
            Query<(&RapierRigidBodyHandle, &mut TransformInterpolation)>,
        >,
    ) {
        let event_queue = events.map(|(ce, fe)| EventQueue {
            deleted_colliders: &self.deleted_colliders,
            collision_events: RwLock::new(ce),
            contact_force_events: RwLock::new(fe),
        });

        let events = self
            .event_handler
            .as_deref()
            .or_else(|| event_queue.as_ref().map(|q| q as &dyn EventHandler))
            .unwrap_or(&() as &dyn EventHandler);

        match timestep_mode {
            TimestepMode::Interpolated {
                dt,
                time_scale,
                substeps,
            } => {
                self.integration_parameters.dt = dt;

                sim_to_render_time.diff += time.delta_seconds();

                while sim_to_render_time.diff > 0.0 {
                    // NOTE: in this comparison we do the same computations we
                    // will do for the next `while` iteration test, to make sure we
                    // don't get bit by potential float inaccuracy.
                    if sim_to_render_time.diff - dt <= 0.0 {
                        if let Some(interpolation_query) = interpolation_query.as_mut() {
                            // This is the last simulation step to be executed in the loop
                            // Update the previous state transforms
                            for (handle, mut interpolation) in interpolation_query.iter_mut() {
                                if let Some(body) = self.bodies.get(handle.0) {
                                    interpolation.start = Some(*body.position());
                                    interpolation.end = None;
                                }
                            }
                        }
                    }

                    let mut substep_integration_parameters = self.integration_parameters;
                    substep_integration_parameters.dt = dt / (substeps as Real) * time_scale;

                    for _ in 0..substeps {
                        self.pipeline.step(
                            &gravity.into(),
                            &substep_integration_parameters,
                            &mut self.islands,
                            &mut self.broad_phase,
                            &mut self.narrow_phase,
                            &mut self.bodies,
                            &mut self.colliders,
                            &mut self.impulse_joints,
                            &mut self.multibody_joints,
                            &mut self.ccd_solver,
                            None,
                            hooks,
                            events,
                        );
                    }

                    sim_to_render_time.diff -= dt;
                }
            }
            TimestepMode::Variable {
                max_dt,
                time_scale,
                substeps,
            } => {
                self.integration_parameters.dt = (time.delta_seconds() * time_scale).min(max_dt);

                let mut substep_integration_parameters = self.integration_parameters;
                substep_integration_parameters.dt /= substeps as Real;

                for _ in 0..substeps {
                    self.pipeline.step(
                        &gravity.into(),
                        &substep_integration_parameters,
                        &mut self.islands,
                        &mut self.broad_phase,
                        &mut self.narrow_phase,
                        &mut self.bodies,
                        &mut self.colliders,
                        &mut self.impulse_joints,
                        &mut self.multibody_joints,
                        &mut self.ccd_solver,
                        None,
                        hooks,
                        events,
                    );
                }
            }
            TimestepMode::Fixed { dt, substeps } => {
                self.integration_parameters.dt = dt;

                let mut substep_integration_parameters = self.integration_parameters;
                substep_integration_parameters.dt = dt / (substeps as Real);

                for _ in 0..substeps {
                    self.pipeline.step(
                        &gravity.into(),
                        &substep_integration_parameters,
                        &mut self.islands,
                        &mut self.broad_phase,
                        &mut self.narrow_phase,
                        &mut self.bodies,
                        &mut self.colliders,
                        &mut self.impulse_joints,
                        &mut self.multibody_joints,
                        &mut self.ccd_solver,
                        None,
                        hooks,
                        events,
                    );
                }
            }
        }
    }

    /// This method makes sure tha the rigid-body positions have been propagated to
    /// their attached colliders, without having to perform a srimulation step.
    pub fn propagate_modified_body_positions_to_colliders(&mut self) {
        self.bodies
            .propagate_modified_body_positions_to_colliders(&mut self.colliders);
    }

    /// Updates the state of the query pipeline, based on the collider positions known
    /// from the last timestep or the last call to `self.propagate_modified_body_positions_to_colliders()`.
    pub fn update_query_pipeline(&mut self) {
        self.query_pipeline.update(&self.bodies, &self.colliders);
    }

    /// The map from entities to rigid-body handles.
    pub fn entity2body(&self) -> &HashMap<Entity, RigidBodyHandle> {
        &self.entity2body
    }

    /// The map from entities to collider handles.
    pub fn entity2collider(&self) -> &HashMap<Entity, ColliderHandle> {
        &self.entity2collider
    }

    /// The map from entities to impulse joint handles.
    pub fn entity2impulse_joint(&self) -> &HashMap<Entity, ImpulseJointHandle> {
        &self.entity2impulse_joint
    }

    /// The map from entities to multibody joint handles.
    pub fn entity2multibody_joint(&self) -> &HashMap<Entity, MultibodyJointHandle> {
        &self.entity2multibody_joint
    }

    /// Attempts to move shape, optionally sliding or climbing obstacles.
    ///
    /// # Parameters
    /// * `movement`: the translational movement to apply.
    /// * `shape`: the shape to move.
    /// * `shape_translation`: the initial position of the shape.
    /// * `shape_rotation`: the rotation of the shape.
    /// * `shape_mass`: the mass of the shape to be considered by the impulse calculation if
    ///                 `MoveShapeOptions::apply_impulse_to_dynamic_bodies` is set to true.
    /// * `options`: configures the behavior of the automatic sliding and climbing.
    /// * `filter`: indicates what collider or rigid-body needs to be ignored by the obstacle detection.
    /// * `events`: callback run on each obstacle hit by the shape on its path.
    #[allow(clippy::too_many_arguments)]
    pub fn move_shape(
        &mut self,
        movement: Vect,
        shape: &Collider,
        shape_translation: Vect,
        shape_rotation: Rot,
        shape_mass: Real,
        options: &MoveShapeOptions,
        filter: QueryFilter,
        mut events: impl FnMut(CharacterCollision),
    ) -> MoveShapeOutput {
        let mut scaled_shape = shape.clone();
        // TODO: how to set a good number of subdivisions, we don’t have access to the
        //       RapierConfiguration::scaled_shape_subdivision here.
        scaled_shape.set_scale(shape.scale, 20);

        let up = options
            .up
            .try_into()
            .expect("The up vector must be non-zero.");
        let autostep = options.autostep.map(|autostep| CharacterAutostep {
            max_height: autostep.max_height,
            min_width: autostep.min_width,
            include_dynamic_bodies: autostep.include_dynamic_bodies,
        });
        let controller = rapier::control::KinematicCharacterController {
            up,
            offset: options.offset,
            slide: options.slide,
            autostep,
            max_slope_climb_angle: options.max_slope_climb_angle,
            min_slope_slide_angle: options.min_slope_slide_angle,
            snap_to_ground: options.snap_to_ground,
            normal_nudge_factor: options.normal_nudge_factor,
        };

        self.character_collisions_collector.clear();

        // TODO: having to grab all the references to avoid having self in
        //       the closure is ugly.
        let dt = self.integration_parameters.dt;
        let colliders = &self.colliders;
        let bodies = &mut self.bodies;
        let query_pipeline = &self.query_pipeline;
        let collisions = &mut self.character_collisions_collector;
        collisions.clear();

        let result = Self::with_query_filter_elts(
            &self.entity2collider,
            &self.entity2body,
            &self.colliders,
            filter,
            move |filter| {
                let result = controller.move_shape(
                    dt,
                    bodies,
                    colliders,
                    query_pipeline,
                    (&scaled_shape).into(),
                    &(shape_translation, shape_rotation).into(),
                    movement.into(),
                    filter,
                    |c| {
                        if let Some(collision) =
                            CharacterCollision::from_raw_with_set(colliders, &c, true)
                        {
                            events(collision);
                        }
                        collisions.push(c);
                    },
                );

                if options.apply_impulse_to_dynamic_bodies {
                    for collision in &*collisions {
                        controller.solve_character_collision_impulses(
                            dt,
                            bodies,
                            colliders,
                            query_pipeline,
                            (&scaled_shape).into(),
                            shape_mass,
                            collision,
                            filter,
                        )
                    }
                }

                result
            },
        );

        MoveShapeOutput {
            effective_translation: result.translation.into(),
            grounded: result.grounded,
        }
    }

    /// Find the closest intersection between a ray and a set of collider.
    ///
    /// # Parameters
    /// * `ray_origin`: the starting point of the ray to cast.
    /// * `ray_dir`: the direction of the ray to cast.
    /// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    /// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
    ///            it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
    ///            even if its starts inside of it.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn cast_ray(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_toi: Real,
        solid: bool,
        filter: QueryFilter,
    ) -> Option<(Entity, Real)> {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());

        let (h, toi) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.cast_ray(
                &self.bodies,
                &self.colliders,
                &ray,
                max_toi,
                solid,
                filter,
            )
        })?;

        self.collider_entity(h).map(|e| (e, toi))
    }

    /// Find the closest intersection between a ray and a set of collider.
    ///
    /// # Parameters
    /// * `ray_origin`: the starting point of the ray to cast.
    /// * `ray_dir`: the direction of the ray to cast.
    /// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    /// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
    ///            it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
    ///            even if its starts inside of it.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn cast_ray_and_get_normal(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_toi: Real,
        solid: bool,
        filter: QueryFilter,
    ) -> Option<(Entity, RayIntersection)> {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());

        let (h, result) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.cast_ray_and_get_normal(
                &self.bodies,
                &self.colliders,
                &ray,
                max_toi,
                solid,
                filter,
            )
        })?;

        self.collider_entity(h)
            .map(|e| (e, RayIntersection::from_rapier(result, ray_origin, ray_dir)))
    }

    /// Find the all intersections between a ray and a set of collider and passes them to a callback.
    ///
    /// # Parameters
    /// * `ray_origin`: the starting point of the ray to cast.
    /// * `ray_dir`: the direction of the ray to cast.
    /// * `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    /// * `solid`: if this is `true` an impact at time 0.0 (i.e. at the ray origin) is returned if
    ///            it starts inside of a shape. If this `false` then the ray will hit the shape's boundary
    ///            even if its starts inside of it.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    /// * `callback`: function executed on each collider for which a ray intersection has been found.
    ///               There is no guarantees on the order the results will be yielded. If this callback returns `false`,
    ///               this method will exit early, ignore any further raycast.
    #[allow(clippy::too_many_arguments)]
    pub fn intersections_with_ray(
        &self,
        ray_origin: Vect,
        ray_dir: Vect,
        max_toi: Real,
        solid: bool,
        filter: QueryFilter,
        mut callback: impl FnMut(Entity, RayIntersection) -> bool,
    ) {
        let ray = Ray::new(ray_origin.into(), ray_dir.into());
        let callback = |h, inter: rapier::prelude::RayIntersection| {
            self.collider_entity(h)
                .map(|e| callback(e, RayIntersection::from_rapier(inter, ray_origin, ray_dir)))
                .unwrap_or(true)
        };

        self.with_query_filter(filter, move |filter| {
            self.query_pipeline.intersections_with_ray(
                &self.bodies,
                &self.colliders,
                &ray,
                max_toi,
                solid,
                filter,
                callback,
            )
        });
    }

    /// Gets the handle of up to one collider intersecting the given shape.
    ///
    /// # Parameters
    /// * `shape_pos` - The position of the shape used for the intersection test.
    /// * `shape` - The shape used for the intersection test.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn intersection_with_shape(
        &self,
        shape_pos: Vect,
        shape_rot: Rot,
        shape: &Collider,
        filter: QueryFilter,
    ) -> Option<Entity> {
        let scaled_transform = (shape_pos, shape_rot).into();
        let mut scaled_shape = shape.clone();
        // TODO: how to set a good number of subdivisions, we don’t have access to the
        //       RapierConfiguration::scaled_shape_subdivision here.
        scaled_shape.set_scale(shape.scale, 20);

        let h = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.intersection_with_shape(
                &self.bodies,
                &self.colliders,
                &scaled_transform,
                &*scaled_shape.raw,
                filter,
            )
        })?;

        self.collider_entity(h)
    }

    /// Find the projection of a point on the closest collider.
    ///
    /// # Parameters
    /// * `point` - The point to project.
    /// * `solid` - If this is set to `true` then the collider shapes are considered to
    ///   be plain (if the point is located inside of a plain shape, its projection is the point
    ///   itself). If it is set to `false` the collider shapes are considered to be hollow
    ///   (if the point is located inside of an hollow shape, it is projected on the shape's
    ///   boundary).
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn project_point(
        &self,
        point: Vect,
        solid: bool,
        filter: QueryFilter,
    ) -> Option<(Entity, PointProjection)> {
        let (h, result) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.project_point(
                &self.bodies,
                &self.colliders,
                &point.into(),
                solid,
                filter,
            )
        })?;

        self.collider_entity(h)
            .map(|e| (e, PointProjection::from_rapier(result)))
    }

    /// Find all the colliders containing the given point.
    ///
    /// # Parameters
    /// * `point` - The point used for the containment test.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    /// * `callback` - A function called with each collider with a shape containing the `point`.
    ///                If this callback returns `false`, this method will exit early, ignore any
    ///                further point projection.
    pub fn intersections_with_point(
        &self,
        point: Vect,
        filter: QueryFilter,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        #[allow(clippy::redundant_closure)]
        // False-positive, we can't move callback, closure becomes `FnOnce`
        let callback = |h| self.collider_entity(h).map(|e| callback(e)).unwrap_or(true);

        self.with_query_filter(filter, move |filter| {
            self.query_pipeline.intersections_with_point(
                &self.bodies,
                &self.colliders,
                &point.into(),
                filter,
                callback,
            )
        });
    }

    /// Find the projection of a point on the closest collider.
    ///
    /// The results include the ID of the feature hit by the point.
    ///
    /// # Parameters
    /// * `point` - The point to project.
    /// * `solid` - If this is set to `true` then the collider shapes are considered to
    ///   be plain (if the point is located inside of a plain shape, its projection is the point
    ///   itself). If it is set to `false` the collider shapes are considered to be hollow
    ///   (if the point is located inside of an hollow shape, it is projected on the shape's
    ///   boundary).
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn project_point_and_get_feature(
        &self,
        point: Vect,
        filter: QueryFilter,
    ) -> Option<(Entity, PointProjection, FeatureId)> {
        let (h, proj, fid) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.project_point_and_get_feature(
                &self.bodies,
                &self.colliders,
                &point.into(),
                filter,
            )
        })?;

        self.collider_entity(h)
            .map(|e| (e, PointProjection::from_rapier(proj), fid))
    }

    /// Finds all entities of all the colliders with an Aabb intersecting the given Aabb.
    #[cfg(not(feature = "headless"))]
    pub fn colliders_with_aabb_intersecting_aabb(
        &self,
        aabb: bevy::render::primitives::Aabb,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        #[cfg(feature = "dim2")]
        let scaled_aabb = rapier::prelude::Aabb {
            mins: aabb.min().xy().into(),
            maxs: aabb.max().xy().into(),
        };
        #[cfg(feature = "dim3")]
        let scaled_aabb = rapier::prelude::Aabb {
            mins: aabb.min().into(),
            maxs: aabb.max().into(),
        };
        #[allow(clippy::redundant_closure)]
        // False-positive, we can't move callback, closure becomes `FnOnce`
        let callback = |h: &ColliderHandle| {
            self.collider_entity(*h)
                .map(|e| callback(e))
                .unwrap_or(true)
        };
        self.query_pipeline
            .colliders_with_aabb_intersecting_aabb(&scaled_aabb, callback);
    }

    /// Casts a shape at a constant linear velocity and retrieve the first collider it hits.
    ///
    /// This is similar to ray-casting except that we are casting a whole shape instead of just a
    /// point (the ray origin). In the resulting `ShapeCastHit`, witness and normal 1 refer to the world
    /// collider, and are in world space.
    ///
    /// # Parameters
    /// * `shape_pos` - The initial translation of the shape to cast.
    /// * `shape_rot` - The rotation of the shape to cast.
    /// * `shape_vel` - The constant velocity of the shape to cast (i.e. the cast direction).
    /// * `shape` - The shape to cast.
    /// * `max_toi` - The maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the distance traveled by the shape to `shapeVel.norm() * maxToi`.
    /// * `stop_at_penetration` - If the casted shape starts in a penetration state with any
    ///    collider, two results are possible. If `stop_at_penetration` is `true` then, the
    ///    result will have a `toi` equal to `start_time`. If `stop_at_penetration` is `false`
    ///    then the nonlinear shape-casting will see if further motion wrt. the penetration normal
    ///    would result in tunnelling. If it does not (i.e. we have a separating velocity along
    ///    that normal) then the nonlinear shape-casting will attempt to find another impact,
    ///    at a time `> start_time` that could result in tunnelling.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    #[allow(clippy::too_many_arguments)]
    pub fn cast_shape(
        &self,
        shape_pos: Vect,
        shape_rot: Rot,
        shape_vel: Vect,
        shape: &Collider,
        options: ShapeCastOptions,
        filter: QueryFilter,
    ) -> Option<(Entity, ShapeCastHit)> {
        let scaled_transform = (shape_pos, shape_rot).into();
        let mut scaled_shape = shape.clone();
        // TODO: how to set a good number of subdivisions, we don’t have access to the
        //       RapierConfiguration::scaled_shape_subdivision here.
        scaled_shape.set_scale(shape.scale, 20);

        let (h, result) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.cast_shape(
                &self.bodies,
                &self.colliders,
                &scaled_transform,
                &shape_vel.into(),
                &*scaled_shape.raw,
                options,
                filter,
            )
        })?;

        self.collider_entity(h).map(|e| {
            (
                e,
                ShapeCastHit::from_rapier(result, options.compute_impact_geometry_on_penetration),
            )
        })
    }

    /* TODO: we need to wrap the NonlinearRigidMotion somehow.
     *
    /// Casts a shape with an arbitrary continuous motion and retrieve the first collider it hits.
    ///
    /// In the resulting `ShapeCastHit`, witness and normal 1 refer to the world collider, and are
    /// in world space.
    ///
    /// # Parameters
    /// * `shape_motion` - The motion of the shape.
    /// * `shape` - The shape to cast.
    /// * `start_time` - The starting time of the interval where the motion takes place.
    /// * `end_time` - The end time of the interval where the motion takes place.
    /// * `stop_at_penetration` - If the casted shape starts in a penetration state with any
    ///    collider, two results are possible. If `stop_at_penetration` is `true` then, the
    ///    result will have a `toi` equal to `start_time`. If `stop_at_penetration` is `false`
    ///    then the nonlinear shape-casting will see if further motion wrt. the penetration normal
    ///    would result in tunnelling. If it does not (i.e. we have a separating velocity along
    ///    that normal) then the nonlinear shape-casting will attempt to find another impact,
    ///    at a time `> start_time` that could result in tunnelling.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    pub fn nonlinear_cast_shape(
        &self,
        shape_motion: &NonlinearRigidMotion,
        shape: &Collider,
        start_time: Real,
        end_time: Real,
        stop_at_penetration: bool,
        filter: QueryFilter,
    ) -> Option<(Entity, Toi)> {
        let scaled_transform = (shape_pos, shape_rot).into();
        let mut scaled_shape = shape.clone();
        // TODO: how to set a good number of subdivisions, we don’t have access to the
        //       RapierConfiguration::scaled_shape_subdivision here.
        scaled_shape.set_scale(shape.scale, 20);

        let (h, result) = self.with_query_filter(filter, move |filter| {
            self.query_pipeline.nonlinear_cast_shape(
                &self.bodies,
                &self.colliders,
                shape_motion,
                &*scaled_shape.raw,
                start_time,
                end_time,
                stop_at_penetration,
                filter,
            )
        })?;

        self.collider_entity(h).map(|e| (e, result))
    }
     */

    /// Retrieve all the colliders intersecting the given shape.
    ///
    /// # Parameters
    /// * `shapePos` - The position of the shape to test.
    /// * `shapeRot` - The orientation of the shape to test.
    /// * `shape` - The shape to test.
    /// * `filter`: set of rules used to determine which collider is taken into account by this scene query.
    /// * `callback` - A function called with the entities of each collider intersecting the `shape`.
    pub fn intersections_with_shape(
        &self,
        shape_pos: Vect,
        shape_rot: Rot,
        shape: &Collider,
        filter: QueryFilter,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        let scaled_transform = (shape_pos, shape_rot).into();
        let mut scaled_shape = shape.clone();
        // TODO: how to set a good number of subdivisions, we don’t have access to the
        //       RapierConfiguration::scaled_shape_subdivision here.
        scaled_shape.set_scale(shape.scale, 20);

        #[allow(clippy::redundant_closure)]
        // False-positive, we can't move callback, closure becomes `FnOnce`
        let callback = |h| self.collider_entity(h).map(|e| callback(e)).unwrap_or(true);

        self.with_query_filter(filter, move |filter| {
            self.query_pipeline.intersections_with_shape(
                &self.bodies,
                &self.colliders,
                &scaled_transform,
                &*scaled_shape.raw,
                filter,
                callback,
            )
        });
    }
}