1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
use std::collections::HashSet;

use bevy_ecs::prelude::*;
use bevy_math::{Mat4, UVec2, UVec3, Vec2, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
use bevy_reflect::Reflect;
use bevy_render::{
    camera::{Camera, CameraProjection, OrthographicProjection},
    color::Color,
    primitives::{Aabb, CubemapFrusta, Frustum, Sphere},
    view::{ComputedVisibility, RenderLayers, Visibility, VisibleEntities},
};
use bevy_transform::components::GlobalTransform;
use bevy_window::Windows;

use crate::{
    calculate_cluster_factors, CubeMapFace, CubemapVisibleEntities, ViewClusterBindings,
    CUBE_MAP_FACES, POINT_LIGHT_NEAR_Z,
};

/// A light that emits light in all directions from a central point.
///
/// Real-world values for `intensity` (luminous power in lumens) based on the electrical power
/// consumption of the type of real-world light are:
///
/// | Luminous Power (lumen) (i.e. the intensity member) | Incandescent non-halogen (Watts) | Incandescent halogen (Watts) | Compact fluorescent (Watts) | LED (Watts |
/// |------|-----|----|--------|-------|
/// | 200  | 25  |    | 3-5    | 3     |
/// | 450  | 40  | 29 | 9-11   | 5-8   |
/// | 800  | 60  |    | 13-15  | 8-12  |
/// | 1100 | 75  | 53 | 18-20  | 10-16 |
/// | 1600 | 100 | 72 | 24-28  | 14-17 |
/// | 2400 | 150 |    | 30-52  | 24-30 |
/// | 3100 | 200 |    | 49-75  | 32    |
/// | 4000 | 300 |    | 75-100 | 40.5  |
///
/// Source: [Wikipedia](https://en.wikipedia.org/wiki/Lumen_(unit)#Lighting)
#[derive(Component, Debug, Clone, Copy, Reflect)]
#[reflect(Component)]
pub struct PointLight {
    pub color: Color,
    pub intensity: f32,
    pub range: f32,
    pub radius: f32,
    pub shadows_enabled: bool,
    pub shadow_depth_bias: f32,
    /// A bias applied along the direction of the fragment's surface normal. It is scaled to the
    /// shadow map's texel size so that it can be small close to the camera and gets larger further
    /// away.
    pub shadow_normal_bias: f32,
}

impl Default for PointLight {
    fn default() -> Self {
        PointLight {
            color: Color::rgb(1.0, 1.0, 1.0),
            /// Luminous power in lumens
            intensity: 800.0, // Roughly a 60W non-halogen incandescent bulb
            range: 20.0,
            radius: 0.0,
            shadows_enabled: false,
            shadow_depth_bias: Self::DEFAULT_SHADOW_DEPTH_BIAS,
            shadow_normal_bias: Self::DEFAULT_SHADOW_NORMAL_BIAS,
        }
    }
}

impl PointLight {
    pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
    pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
}

#[derive(Clone, Debug)]
pub struct PointLightShadowMap {
    pub size: usize,
}

impl Default for PointLightShadowMap {
    fn default() -> Self {
        Self { size: 1024 }
    }
}

/// A Directional light.
///
/// Directional lights don't exist in reality but they are a good
/// approximation for light sources VERY far away, like the sun or
/// the moon.
///
/// Valid values for `illuminance` are:
///
/// | Illuminance (lux) | Surfaces illuminated by                        |
/// |-------------------|------------------------------------------------|
/// | 0.0001            | Moonless, overcast night sky (starlight)       |
/// | 0.002             | Moonless clear night sky with airglow          |
/// | 0.05–0.3          | Full moon on a clear night                     |
/// | 3.4               | Dark limit of civil twilight under a clear sky |
/// | 20–50             | Public areas with dark surroundings            |
/// | 50                | Family living room lights                      |
/// | 80                | Office building hallway/toilet lighting        |
/// | 100               | Very dark overcast day                         |
/// | 150               | Train station platforms                        |
/// | 320–500           | Office lighting                                |
/// | 400               | Sunrise or sunset on a clear day.              |
/// | 1000              | Overcast day; typical TV studio lighting       |
/// | 10,000–25,000     | Full daylight (not direct sun)                 |
/// | 32,000–100,000    | Direct sunlight                                |
///
/// Source: [Wikipedia](https://en.wikipedia.org/wiki/Lux)
#[derive(Component, Debug, Clone, Reflect)]
#[reflect(Component)]
pub struct DirectionalLight {
    pub color: Color,
    /// Illuminance in lux
    pub illuminance: f32,
    pub shadows_enabled: bool,
    pub shadow_projection: OrthographicProjection,
    pub shadow_depth_bias: f32,
    /// A bias applied along the direction of the fragment's surface normal. It is scaled to the
    /// shadow map's texel size so that it is automatically adjusted to the orthographic projection.
    pub shadow_normal_bias: f32,
}

impl Default for DirectionalLight {
    fn default() -> Self {
        let size = 100.0;
        DirectionalLight {
            color: Color::rgb(1.0, 1.0, 1.0),
            illuminance: 100000.0,
            shadows_enabled: false,
            shadow_projection: OrthographicProjection {
                left: -size,
                right: size,
                bottom: -size,
                top: size,
                near: -size,
                far: size,
                ..Default::default()
            },
            shadow_depth_bias: Self::DEFAULT_SHADOW_DEPTH_BIAS,
            shadow_normal_bias: Self::DEFAULT_SHADOW_NORMAL_BIAS,
        }
    }
}

impl DirectionalLight {
    pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
    pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
}

#[derive(Clone, Debug)]
pub struct DirectionalLightShadowMap {
    pub size: usize,
}

impl Default for DirectionalLightShadowMap {
    fn default() -> Self {
        #[cfg(feature = "webgl")]
        return Self { size: 2048 };
        #[cfg(not(feature = "webgl"))]
        return Self { size: 4096 };
    }
}

/// An ambient light, which lights the entire scene equally.
#[derive(Debug)]
pub struct AmbientLight {
    pub color: Color,
    /// A direct scale factor multiplied with `color` before being passed to the shader.
    pub brightness: f32,
}

impl Default for AmbientLight {
    fn default() -> Self {
        Self {
            color: Color::rgb(1.0, 1.0, 1.0),
            brightness: 0.05,
        }
    }
}

/// Add this component to make a [`Mesh`](bevy_render::mesh::Mesh) not cast shadows.
#[derive(Component)]
pub struct NotShadowCaster;
/// Add this component to make a [`Mesh`](bevy_render::mesh::Mesh) not receive shadows.
#[derive(Component)]
pub struct NotShadowReceiver;

#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemLabel)]
pub enum SimulationLightSystems {
    AddClusters,
    UpdateClusters,
    AssignLightsToClusters,
    UpdateDirectionalLightFrusta,
    UpdatePointLightFrusta,
    CheckLightVisibility,
}

// Clustered-forward rendering notes
// The main initial reference material used was this rather accessible article:
// http://www.aortiz.me/2018/12/21/CG.html
// Some inspiration was taken from “Practical Clustered Shading” which is part 2 of:
// https://efficientshading.com/2015/01/01/real-time-many-light-management-and-shadows-with-clustered-shading/
// (Also note that Part 3 of the above shows how we could support the shadow mapping for many lights.)
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa’s Siggraph 2016 talk about Doom 2016:
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf

#[derive(Component, Debug)]
pub struct Clusters {
    /// Tile size
    pub(crate) tile_size: UVec2,
    /// Number of clusters in x / y / z in the view frustum
    pub(crate) axis_slices: UVec3,
    /// Distance to the far plane of the first depth slice. The first depth slice is special
    /// and explicitly-configured to avoid having unnecessarily many slices close to the camera.
    pub(crate) near: f32,
    aabbs: Vec<Aabb>,
    pub(crate) lights: Vec<VisiblePointLights>,
}

impl Clusters {
    fn new(tile_size: UVec2, screen_size: UVec2, z_slices: u32) -> Self {
        let mut clusters = Self {
            tile_size,
            axis_slices: Default::default(),
            near: 5.0,
            aabbs: Default::default(),
            lights: Default::default(),
        };
        clusters.update(tile_size, screen_size, z_slices);
        clusters
    }

    fn from_screen_size_and_z_slices(screen_size: UVec2, z_slices: u32) -> Self {
        let aspect_ratio = screen_size.x as f32 / screen_size.y as f32;
        let n_tiles_y =
            ((ViewClusterBindings::MAX_OFFSETS as u32 / z_slices) as f32 / aspect_ratio).sqrt();
        // NOTE: Round down the number of tiles in order to avoid overflowing the maximum number of
        // clusters.
        let n_tiles = UVec2::new(
            (aspect_ratio * n_tiles_y).floor() as u32,
            n_tiles_y.floor() as u32,
        );
        Clusters::new((screen_size + UVec2::ONE) / n_tiles, screen_size, Z_SLICES)
    }

    fn update(&mut self, tile_size: UVec2, screen_size: UVec2, z_slices: u32) {
        self.tile_size = tile_size;
        self.axis_slices = UVec3::new(
            (screen_size.x + 1) / tile_size.x,
            (screen_size.y + 1) / tile_size.y,
            z_slices,
        );
        // NOTE: Maximum 4096 clusters due to uniform buffer size constraints
        assert!(self.axis_slices.x * self.axis_slices.y * self.axis_slices.z <= 4096);
    }
}

fn clip_to_view(inverse_projection: Mat4, clip: Vec4) -> Vec4 {
    let view = inverse_projection * clip;
    view / view.w
}

fn screen_to_view(screen_size: Vec2, inverse_projection: Mat4, screen: Vec2, ndc_z: f32) -> Vec4 {
    let tex_coord = screen / screen_size;
    let clip = Vec4::new(
        tex_coord.x * 2.0 - 1.0,
        (1.0 - tex_coord.y) * 2.0 - 1.0,
        ndc_z,
        1.0,
    );
    clip_to_view(inverse_projection, clip)
}

// Calculate the intersection of a ray from the eye through the view space position to a z plane
fn line_intersection_to_z_plane(origin: Vec3, p: Vec3, z: f32) -> Vec3 {
    let v = p - origin;
    let t = (z - Vec3::Z.dot(origin)) / Vec3::Z.dot(v);
    origin + t * v
}

#[allow(clippy::too_many_arguments)]
fn compute_aabb_for_cluster(
    z_near: f32,
    z_far: f32,
    tile_size: Vec2,
    screen_size: Vec2,
    inverse_projection: Mat4,
    is_orthographic: bool,
    cluster_dimensions: UVec3,
    ijk: UVec3,
) -> Aabb {
    let ijk = ijk.as_vec3();

    // Calculate the minimum and maximum points in screen space
    let p_min = ijk.xy() * tile_size;
    let p_max = p_min + tile_size;

    let cluster_min;
    let cluster_max;
    if is_orthographic {
        // Use linear depth slicing for orthographic

        // Convert to view space at the cluster near and far planes
        // NOTE: 1.0 is the near plane due to using reverse z projections
        let p_min = screen_to_view(
            screen_size,
            inverse_projection,
            p_min,
            1.0 - (ijk.z / cluster_dimensions.z as f32),
        )
        .xyz();
        let p_max = screen_to_view(
            screen_size,
            inverse_projection,
            p_max,
            1.0 - ((ijk.z + 1.0) / cluster_dimensions.z as f32),
        )
        .xyz();

        cluster_min = p_min.min(p_max);
        cluster_max = p_min.max(p_max);
    } else {
        // Convert to view space at the near plane
        // NOTE: 1.0 is the near plane due to using reverse z projections
        let p_min = screen_to_view(screen_size, inverse_projection, p_min, 1.0);
        let p_max = screen_to_view(screen_size, inverse_projection, p_max, 1.0);

        let z_far_over_z_near = -z_far / -z_near;
        let cluster_near = if ijk.z == 0.0 {
            0.0
        } else {
            -z_near * z_far_over_z_near.powf((ijk.z - 1.0) / (cluster_dimensions.z - 1) as f32)
        };
        // NOTE: This could be simplified to:
        // cluster_far = cluster_near * z_far_over_z_near;
        let cluster_far =
            -z_near * z_far_over_z_near.powf(ijk.z / (cluster_dimensions.z - 1) as f32);

        // Calculate the four intersection points of the min and max points with the cluster near and far planes
        let p_min_near = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_near);
        let p_min_far = line_intersection_to_z_plane(Vec3::ZERO, p_min.xyz(), cluster_far);
        let p_max_near = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_near);
        let p_max_far = line_intersection_to_z_plane(Vec3::ZERO, p_max.xyz(), cluster_far);

        cluster_min = p_min_near.min(p_min_far).min(p_max_near.min(p_max_far));
        cluster_max = p_min_near.max(p_min_far).max(p_max_near.max(p_max_far));
    }

    Aabb::from_min_max(cluster_min, cluster_max)
}

const Z_SLICES: u32 = 24;

pub fn add_clusters(
    mut commands: Commands,
    windows: Res<Windows>,
    cameras: Query<(Entity, &Camera), Without<Clusters>>,
) {
    for (entity, camera) in cameras.iter() {
        let window = match windows.get(camera.window) {
            Some(window) => window,
            None => continue,
        };
        let clusters = Clusters::from_screen_size_and_z_slices(
            UVec2::new(window.physical_width(), window.physical_height()),
            Z_SLICES,
        );
        commands.entity(entity).insert(clusters);
    }
}

pub fn update_clusters(windows: Res<Windows>, mut views: Query<(&Camera, &mut Clusters)>) {
    for (camera, mut clusters) in views.iter_mut() {
        let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
        let inverse_projection = camera.projection_matrix.inverse();
        let window = windows.get(camera.window).unwrap();
        let screen_size_u32 = UVec2::new(window.physical_width(), window.physical_height());
        // Don't update clusters if screen size is 0.
        if screen_size_u32.x == 0 || screen_size_u32.y == 0 {
            continue;
        }
        *clusters =
            Clusters::from_screen_size_and_z_slices(screen_size_u32, clusters.axis_slices.z);
        let screen_size = screen_size_u32.as_vec2();
        let tile_size_u32 = clusters.tile_size;
        let tile_size = tile_size_u32.as_vec2();

        // Calculate view space AABBs
        // NOTE: It is important that these are iterated in a specific order
        // so that we can calculate the cluster index in the fragment shader!
        // I (Rob Swain) choose to scan along rows of tiles in x,y, and for each tile then scan
        // along z
        let mut aabbs = Vec::with_capacity(
            (clusters.axis_slices.y * clusters.axis_slices.x * clusters.axis_slices.z) as usize,
        );
        for y in 0..clusters.axis_slices.y {
            for x in 0..clusters.axis_slices.x {
                for z in 0..clusters.axis_slices.z {
                    aabbs.push(compute_aabb_for_cluster(
                        clusters.near,
                        camera.far,
                        tile_size,
                        screen_size,
                        inverse_projection,
                        is_orthographic,
                        clusters.axis_slices,
                        UVec3::new(x, y, z),
                    ));
                }
            }
        }
        clusters.aabbs = aabbs;
    }
}

#[derive(Clone, Component, Debug, Default)]
pub struct VisiblePointLights {
    pub entities: Vec<Entity>,
}

impl VisiblePointLights {
    pub fn from_light_count(count: usize) -> Self {
        Self {
            entities: Vec::with_capacity(count),
        }
    }

    pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Entity> {
        self.entities.iter()
    }

    pub fn len(&self) -> usize {
        self.entities.len()
    }

    pub fn is_empty(&self) -> bool {
        self.entities.is_empty()
    }
}

fn view_z_to_z_slice(
    cluster_factors: Vec2,
    z_slices: f32,
    view_z: f32,
    is_orthographic: bool,
) -> u32 {
    if is_orthographic {
        // NOTE: view_z is correct in the orthographic case
        ((view_z - cluster_factors.x) * cluster_factors.y).floor() as u32
    } else {
        // NOTE: had to use -view_z to make it positive else log(negative) is nan
        ((-view_z).ln() * cluster_factors.x - cluster_factors.y + 1.0).clamp(0.0, z_slices - 1.0)
            as u32
    }
}

fn ndc_position_to_cluster(
    cluster_dimensions: UVec3,
    cluster_factors: Vec2,
    is_orthographic: bool,
    ndc_p: Vec3,
    view_z: f32,
) -> UVec3 {
    let cluster_dimensions_f32 = cluster_dimensions.as_vec3();
    let frag_coord =
        (ndc_p.xy() * Vec2::new(0.5, -0.5) + Vec2::splat(0.5)).clamp(Vec2::ZERO, Vec2::ONE);
    let xy = (frag_coord * cluster_dimensions_f32.xy()).floor();
    let z_slice = view_z_to_z_slice(
        cluster_factors,
        cluster_dimensions.z as f32,
        view_z,
        is_orthographic,
    );
    xy.as_uvec2()
        .extend(z_slice)
        .clamp(UVec3::ZERO, cluster_dimensions - UVec3::ONE)
}

fn cluster_to_index(cluster_dimensions: UVec3, cluster: UVec3) -> usize {
    ((cluster.y * cluster_dimensions.x + cluster.x) * cluster_dimensions.z + cluster.z) as usize
}

// NOTE: Run this before update_point_light_frusta!
pub fn assign_lights_to_clusters(
    mut commands: Commands,
    mut global_lights: ResMut<VisiblePointLights>,
    mut views: Query<(Entity, &GlobalTransform, &Camera, &Frustum, &mut Clusters)>,
    lights: Query<(Entity, &GlobalTransform, &PointLight)>,
) {
    let light_count = lights.iter().count();
    let mut global_lights_set = HashSet::with_capacity(light_count);
    for (view_entity, view_transform, camera, frustum, mut clusters) in views.iter_mut() {
        let view_transform = view_transform.compute_matrix();
        let inverse_view_transform = view_transform.inverse();
        let cluster_count = clusters.aabbs.len();
        let is_orthographic = camera.projection_matrix.w_axis.w == 1.0;
        let cluster_factors = calculate_cluster_factors(
            // NOTE: Using the special cluster near value
            clusters.near,
            camera.far,
            clusters.axis_slices.z as f32,
            is_orthographic,
        );

        let mut clusters_lights =
            vec![VisiblePointLights::from_light_count(light_count); cluster_count];
        let mut visible_lights_set = HashSet::with_capacity(light_count);

        for (light_entity, light_transform, light) in lights.iter() {
            let light_sphere = Sphere {
                center: light_transform.translation,
                radius: light.range,
            };

            // Check if the light is within the view frustum
            if !frustum.intersects_sphere(&light_sphere) {
                continue;
            }

            // Calculate an AABB for the light in view space, find the corresponding clusters for the min and max
            // points of the AABB, then iterate over just those clusters for this light
            let light_aabb_view = Aabb {
                center: (inverse_view_transform * light_sphere.center.extend(1.0)).xyz(),
                half_extents: Vec3::splat(light_sphere.radius),
            };
            let (light_aabb_view_min, light_aabb_view_max) =
                (light_aabb_view.min(), light_aabb_view.max());
            // Is there a cheaper way to do this? The problem is that because of perspective
            // the point at max z but min xy may be less xy in screenspace, and similar. As
            // such, projecting the min and max xy at both the closer and further z and taking
            // the min and max of those projected points addresses this.
            let (
                light_aabb_view_xymin_near,
                light_aabb_view_xymin_far,
                light_aabb_view_xymax_near,
                light_aabb_view_xymax_far,
            ) = (
                light_aabb_view_min,
                light_aabb_view_min.xy().extend(light_aabb_view_max.z),
                light_aabb_view_max.xy().extend(light_aabb_view_min.z),
                light_aabb_view_max,
            );
            let (
                light_aabb_clip_xymin_near,
                light_aabb_clip_xymin_far,
                light_aabb_clip_xymax_near,
                light_aabb_clip_xymax_far,
            ) = (
                camera.projection_matrix * light_aabb_view_xymin_near.extend(1.0),
                camera.projection_matrix * light_aabb_view_xymin_far.extend(1.0),
                camera.projection_matrix * light_aabb_view_xymax_near.extend(1.0),
                camera.projection_matrix * light_aabb_view_xymax_far.extend(1.0),
            );
            let (
                light_aabb_ndc_xymin_near,
                light_aabb_ndc_xymin_far,
                light_aabb_ndc_xymax_near,
                light_aabb_ndc_xymax_far,
            ) = (
                light_aabb_clip_xymin_near.xyz() / light_aabb_clip_xymin_near.w,
                light_aabb_clip_xymin_far.xyz() / light_aabb_clip_xymin_far.w,
                light_aabb_clip_xymax_near.xyz() / light_aabb_clip_xymax_near.w,
                light_aabb_clip_xymax_far.xyz() / light_aabb_clip_xymax_far.w,
            );
            let (light_aabb_ndc_min, light_aabb_ndc_max) = (
                light_aabb_ndc_xymin_near
                    .min(light_aabb_ndc_xymin_far)
                    .min(light_aabb_ndc_xymax_near)
                    .min(light_aabb_ndc_xymax_far),
                light_aabb_ndc_xymin_near
                    .max(light_aabb_ndc_xymin_far)
                    .max(light_aabb_ndc_xymax_near)
                    .max(light_aabb_ndc_xymax_far),
            );
            let min_cluster = ndc_position_to_cluster(
                clusters.axis_slices,
                cluster_factors,
                is_orthographic,
                light_aabb_ndc_min,
                light_aabb_view_min.z,
            );
            let max_cluster = ndc_position_to_cluster(
                clusters.axis_slices,
                cluster_factors,
                is_orthographic,
                light_aabb_ndc_max,
                light_aabb_view_max.z,
            );
            let (min_cluster, max_cluster) =
                (min_cluster.min(max_cluster), min_cluster.max(max_cluster));
            for y in min_cluster.y..=max_cluster.y {
                for x in min_cluster.x..=max_cluster.x {
                    for z in min_cluster.z..=max_cluster.z {
                        let cluster_index =
                            cluster_to_index(clusters.axis_slices, UVec3::new(x, y, z));
                        let cluster_aabb = &clusters.aabbs[cluster_index];
                        if light_sphere.intersects_obb(cluster_aabb, &view_transform) {
                            global_lights_set.insert(light_entity);
                            visible_lights_set.insert(light_entity);
                            clusters_lights[cluster_index].entities.push(light_entity);
                        }
                    }
                }
            }
        }

        for cluster_lights in clusters_lights.iter_mut() {
            cluster_lights.entities.shrink_to_fit();
        }

        clusters.lights = clusters_lights;
        commands.entity(view_entity).insert(VisiblePointLights {
            entities: visible_lights_set.into_iter().collect(),
        });
    }
    global_lights.entities = global_lights_set.into_iter().collect();
}

pub fn update_directional_light_frusta(
    mut views: Query<(&GlobalTransform, &DirectionalLight, &mut Frustum)>,
) {
    for (transform, directional_light, mut frustum) in views.iter_mut() {
        // The frustum is used for culling meshes to the light for shadow mapping
        // so if shadow mapping is disabled for this light, then the frustum is
        // not needed.
        if !directional_light.shadows_enabled {
            continue;
        }

        let view_projection = directional_light.shadow_projection.get_projection_matrix()
            * transform.compute_matrix().inverse();
        *frustum = Frustum::from_view_projection(
            &view_projection,
            &transform.translation,
            &transform.back(),
            directional_light.shadow_projection.far(),
        );
    }
}

// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
    global_lights: Res<VisiblePointLights>,
    mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
) {
    let projection =
        Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, POINT_LIGHT_NEAR_Z);
    let view_rotations = CUBE_MAP_FACES
        .iter()
        .map(|CubeMapFace { target, up }| GlobalTransform::identity().looking_at(*target, *up))
        .collect::<Vec<_>>();

    let global_lights_set = global_lights
        .entities
        .iter()
        .copied()
        .collect::<HashSet<_>>();
    for (entity, transform, point_light, mut cubemap_frusta) in views.iter_mut() {
        // The frusta are used for culling meshes to the light for shadow mapping
        // so if shadow mapping is disabled for this light, then the frusta are
        // not needed.
        // Also, if the light is not relevant for any cluster, it will not be in the
        // global lights set and so there is no need to update its frusta.
        if !point_light.shadows_enabled || !global_lights_set.contains(&entity) {
            continue;
        }

        // ignore scale because we don't want to effectively scale light radius and range
        // by applying those as a view transform to shadow map rendering of objects
        // and ignore rotation because we want the shadow map projections to align with the axes
        let view_translation = GlobalTransform::from_translation(transform.translation);
        let view_backward = transform.back();

        for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
            let view = view_translation * *view_rotation;
            let view_projection = projection * view.compute_matrix().inverse();

            *frustum = Frustum::from_view_projection(
                &view_projection,
                &transform.translation,
                &view_backward,
                point_light.range,
            );
        }
    }
}

pub fn check_light_mesh_visibility(
    // NOTE: VisiblePointLights is an alias for VisibleEntities so the Without<DirectionalLight>
    // is needed to avoid an unnecessary QuerySet
    visible_point_lights: Query<&VisiblePointLights, Without<DirectionalLight>>,
    mut point_lights: Query<(
        &PointLight,
        &GlobalTransform,
        &CubemapFrusta,
        &mut CubemapVisibleEntities,
        Option<&RenderLayers>,
    )>,
    mut directional_lights: Query<(
        &DirectionalLight,
        &Frustum,
        &mut VisibleEntities,
        Option<&RenderLayers>,
    )>,
    mut visible_entity_query: Query<
        (
            Entity,
            &Visibility,
            &mut ComputedVisibility,
            Option<&RenderLayers>,
            Option<&Aabb>,
            Option<&GlobalTransform>,
        ),
        Without<NotShadowCaster>,
    >,
) {
    // Directonal lights
    for (directional_light, frustum, mut visible_entities, maybe_view_mask) in
        directional_lights.iter_mut()
    {
        visible_entities.entities.clear();

        // NOTE: If shadow mapping is disabled for the light then it must have no visible entities
        if !directional_light.shadows_enabled {
            continue;
        }

        let view_mask = maybe_view_mask.copied().unwrap_or_default();

        for (
            entity,
            visibility,
            mut computed_visibility,
            maybe_entity_mask,
            maybe_aabb,
            maybe_transform,
        ) in visible_entity_query.iter_mut()
        {
            if !visibility.is_visible {
                continue;
            }

            let entity_mask = maybe_entity_mask.copied().unwrap_or_default();
            if !view_mask.intersects(&entity_mask) {
                continue;
            }

            // If we have an aabb and transform, do frustum culling
            if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
                if !frustum.intersects_obb(aabb, &transform.compute_matrix()) {
                    continue;
                }
            }

            computed_visibility.is_visible = true;
            visible_entities.entities.push(entity);
        }

        // TODO: check for big changes in visible entities len() vs capacity() (ex: 2x) and resize
        // to prevent holding unneeded memory
    }

    // Point lights
    for visible_lights in visible_point_lights.iter() {
        for light_entity in visible_lights.entities.iter().copied() {
            if let Ok((
                point_light,
                transform,
                cubemap_frusta,
                mut cubemap_visible_entities,
                maybe_view_mask,
            )) = point_lights.get_mut(light_entity)
            {
                for visible_entities in cubemap_visible_entities.iter_mut() {
                    visible_entities.entities.clear();
                }

                // NOTE: If shadow mapping is disabled for the light then it must have no visible entities
                if !point_light.shadows_enabled {
                    continue;
                }

                let view_mask = maybe_view_mask.copied().unwrap_or_default();
                let light_sphere = Sphere {
                    center: transform.translation,
                    radius: point_light.range,
                };

                for (
                    entity,
                    visibility,
                    mut computed_visibility,
                    maybe_entity_mask,
                    maybe_aabb,
                    maybe_transform,
                ) in visible_entity_query.iter_mut()
                {
                    if !visibility.is_visible {
                        continue;
                    }

                    let entity_mask = maybe_entity_mask.copied().unwrap_or_default();
                    if !view_mask.intersects(&entity_mask) {
                        continue;
                    }

                    // If we have an aabb and transform, do frustum culling
                    if let (Some(aabb), Some(transform)) = (maybe_aabb, maybe_transform) {
                        let model_to_world = transform.compute_matrix();
                        // Do a cheap sphere vs obb test to prune out most meshes outside the sphere of the light
                        if !light_sphere.intersects_obb(aabb, &model_to_world) {
                            continue;
                        }
                        for (frustum, visible_entities) in cubemap_frusta
                            .iter()
                            .zip(cubemap_visible_entities.iter_mut())
                        {
                            if frustum.intersects_obb(aabb, &model_to_world) {
                                computed_visibility.is_visible = true;
                                visible_entities.entities.push(entity);
                            }
                        }
                    } else {
                        computed_visibility.is_visible = true;
                        for visible_entities in cubemap_visible_entities.iter_mut() {
                            visible_entities.entities.push(entity)
                        }
                    }
                }

                // TODO: check for big changes in visible entities len() vs capacity() (ex: 2x) and resize
                // to prevent holding unneeded memory
            }
        }
    }
}