bevy_pbr/render/
light.rs

1use crate::*;
2use bevy_asset::UntypedAssetId;
3use bevy_camera::primitives::{
4    face_index_to_name, CascadesFrusta, CubeMapFace, CubemapFrusta, Frustum, HalfSpace,
5    CUBE_MAP_FACES,
6};
7use bevy_camera::visibility::{
8    CascadesVisibleEntities, CubemapVisibleEntities, RenderLayers, ViewVisibility,
9    VisibleMeshEntities,
10};
11use bevy_camera::Camera3d;
12use bevy_color::ColorToComponents;
13use bevy_core_pipeline::core_3d::CORE_3D_DEPTH_FORMAT;
14use bevy_derive::{Deref, DerefMut};
15use bevy_ecs::component::Tick;
16use bevy_ecs::system::SystemChangeTick;
17use bevy_ecs::{
18    entity::{EntityHashMap, EntityHashSet},
19    prelude::*,
20    system::lifetimeless::Read,
21};
22use bevy_light::cascade::Cascade;
23use bevy_light::cluster::assign::{calculate_cluster_factors, ClusterableObjectType};
24use bevy_light::cluster::GlobalVisibleClusterableObjects;
25use bevy_light::SunDisk;
26use bevy_light::{
27    spot_light_clip_from_view, spot_light_world_from_view, AmbientLight, CascadeShadowConfig,
28    Cascades, DirectionalLight, DirectionalLightShadowMap, NotShadowCaster, PointLight,
29    PointLightShadowMap, ShadowFilteringMethod, SpotLight, VolumetricLight,
30};
31use bevy_math::{ops, Mat4, UVec4, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
32use bevy_platform::collections::{HashMap, HashSet};
33use bevy_platform::hash::FixedHasher;
34use bevy_render::erased_render_asset::ErasedRenderAssets;
35use bevy_render::experimental::occlusion_culling::{
36    OcclusionCulling, OcclusionCullingSubview, OcclusionCullingSubviewEntities,
37};
38use bevy_render::sync_world::MainEntityHashMap;
39use bevy_render::{
40    batching::gpu_preprocessing::{GpuPreprocessingMode, GpuPreprocessingSupport},
41    camera::SortedCameras,
42    mesh::allocator::MeshAllocator,
43    view::{NoIndirectDrawing, RetainedViewEntity},
44};
45use bevy_render::{
46    diagnostic::RecordDiagnostics,
47    mesh::RenderMesh,
48    render_asset::RenderAssets,
49    render_graph::{Node, NodeRunError, RenderGraphContext},
50    render_phase::*,
51    render_resource::*,
52    renderer::{RenderContext, RenderDevice, RenderQueue},
53    texture::*,
54    view::ExtractedView,
55    Extract,
56};
57use bevy_render::{
58    mesh::allocator::SlabId,
59    sync_world::{MainEntity, RenderEntity},
60};
61use bevy_transform::{components::GlobalTransform, prelude::Transform};
62use bevy_utils::default;
63use core::{hash::Hash, ops::Range};
64use decal::clustered::RenderClusteredDecals;
65#[cfg(feature = "trace")]
66use tracing::info_span;
67use tracing::{error, warn};
68
69#[derive(Component)]
70pub struct ExtractedPointLight {
71    pub color: LinearRgba,
72    /// luminous intensity in lumens per steradian
73    pub intensity: f32,
74    pub range: f32,
75    pub radius: f32,
76    pub transform: GlobalTransform,
77    pub shadows_enabled: bool,
78    pub shadow_depth_bias: f32,
79    pub shadow_normal_bias: f32,
80    pub shadow_map_near_z: f32,
81    pub spot_light_angles: Option<(f32, f32)>,
82    pub volumetric: bool,
83    pub soft_shadows_enabled: bool,
84    /// whether this point light contributes diffuse light to lightmapped meshes
85    pub affects_lightmapped_mesh_diffuse: bool,
86}
87
88#[derive(Component, Debug)]
89pub struct ExtractedDirectionalLight {
90    pub color: LinearRgba,
91    pub illuminance: f32,
92    pub transform: GlobalTransform,
93    pub shadows_enabled: bool,
94    pub volumetric: bool,
95    /// whether this directional light contributes diffuse light to lightmapped
96    /// meshes
97    pub affects_lightmapped_mesh_diffuse: bool,
98    pub shadow_depth_bias: f32,
99    pub shadow_normal_bias: f32,
100    pub cascade_shadow_config: CascadeShadowConfig,
101    pub cascades: EntityHashMap<Vec<Cascade>>,
102    pub frusta: EntityHashMap<Vec<Frustum>>,
103    pub render_layers: RenderLayers,
104    pub soft_shadow_size: Option<f32>,
105    /// True if this light is using two-phase occlusion culling.
106    pub occlusion_culling: bool,
107    pub sun_disk_angular_size: f32,
108    pub sun_disk_intensity: f32,
109}
110
111// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_view_types.wgsl!
112bitflags::bitflags! {
113    #[repr(transparent)]
114    struct PointLightFlags: u32 {
115        const SHADOWS_ENABLED                   = 1 << 0;
116        const SPOT_LIGHT_Y_NEGATIVE             = 1 << 1;
117        const VOLUMETRIC                        = 1 << 2;
118        const AFFECTS_LIGHTMAPPED_MESH_DIFFUSE  = 1 << 3;
119        const NONE                              = 0;
120        const UNINITIALIZED                     = 0xFFFF;
121    }
122}
123
124#[derive(Copy, Clone, ShaderType, Default, Debug)]
125pub struct GpuDirectionalCascade {
126    clip_from_world: Mat4,
127    texel_size: f32,
128    far_bound: f32,
129}
130
131#[derive(Copy, Clone, ShaderType, Default, Debug)]
132pub struct GpuDirectionalLight {
133    cascades: [GpuDirectionalCascade; MAX_CASCADES_PER_LIGHT],
134    color: Vec4,
135    dir_to_light: Vec3,
136    flags: u32,
137    soft_shadow_size: f32,
138    shadow_depth_bias: f32,
139    shadow_normal_bias: f32,
140    num_cascades: u32,
141    cascades_overlap_proportion: f32,
142    depth_texture_base_index: u32,
143    decal_index: u32,
144    sun_disk_angular_size: f32,
145    sun_disk_intensity: f32,
146}
147
148// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_view_types.wgsl!
149bitflags::bitflags! {
150    #[repr(transparent)]
151    struct DirectionalLightFlags: u32 {
152        const SHADOWS_ENABLED                   = 1 << 0;
153        const VOLUMETRIC                        = 1 << 1;
154        const AFFECTS_LIGHTMAPPED_MESH_DIFFUSE  = 1 << 2;
155        const NONE                              = 0;
156        const UNINITIALIZED                     = 0xFFFF;
157    }
158}
159
160#[derive(Copy, Clone, Debug, ShaderType)]
161pub struct GpuLights {
162    directional_lights: [GpuDirectionalLight; MAX_DIRECTIONAL_LIGHTS],
163    ambient_color: Vec4,
164    // xyz are x/y/z cluster dimensions and w is the number of clusters
165    cluster_dimensions: UVec4,
166    // xy are vec2<f32>(cluster_dimensions.xy) / vec2<f32>(view.width, view.height)
167    // z is cluster_dimensions.z / log(far / near)
168    // w is cluster_dimensions.z * log(near) / log(far / near)
169    cluster_factors: Vec4,
170    n_directional_lights: u32,
171    // offset from spot light's light index to spot light's shadow map index
172    spot_light_shadowmap_offset: i32,
173    ambient_light_affects_lightmapped_meshes: u32,
174}
175
176// NOTE: When running bevy on Adreno GPU chipsets in WebGL, any value above 1 will result in a crash
177// when loading the wgsl "pbr_functions.wgsl" in the function apply_fog.
178#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
179pub const MAX_DIRECTIONAL_LIGHTS: usize = 1;
180#[cfg(any(
181    not(feature = "webgl"),
182    not(target_arch = "wasm32"),
183    feature = "webgpu"
184))]
185pub const MAX_DIRECTIONAL_LIGHTS: usize = 10;
186#[cfg(any(
187    not(feature = "webgl"),
188    not(target_arch = "wasm32"),
189    feature = "webgpu"
190))]
191pub const MAX_CASCADES_PER_LIGHT: usize = 4;
192#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
193pub const MAX_CASCADES_PER_LIGHT: usize = 1;
194
195#[derive(Resource, Clone)]
196pub struct ShadowSamplers {
197    pub point_light_comparison_sampler: Sampler,
198    #[cfg(feature = "experimental_pbr_pcss")]
199    pub point_light_linear_sampler: Sampler,
200    pub directional_light_comparison_sampler: Sampler,
201    #[cfg(feature = "experimental_pbr_pcss")]
202    pub directional_light_linear_sampler: Sampler,
203}
204
205pub fn init_shadow_samplers(mut commands: Commands, render_device: Res<RenderDevice>) {
206    let base_sampler_descriptor = SamplerDescriptor {
207        address_mode_u: AddressMode::ClampToEdge,
208        address_mode_v: AddressMode::ClampToEdge,
209        address_mode_w: AddressMode::ClampToEdge,
210        mag_filter: FilterMode::Linear,
211        min_filter: FilterMode::Linear,
212        mipmap_filter: FilterMode::Nearest,
213        ..default()
214    };
215
216    commands.insert_resource(ShadowSamplers {
217        point_light_comparison_sampler: render_device.create_sampler(&SamplerDescriptor {
218            compare: Some(CompareFunction::GreaterEqual),
219            ..base_sampler_descriptor
220        }),
221        #[cfg(feature = "experimental_pbr_pcss")]
222        point_light_linear_sampler: render_device.create_sampler(&base_sampler_descriptor),
223        directional_light_comparison_sampler: render_device.create_sampler(&SamplerDescriptor {
224            compare: Some(CompareFunction::GreaterEqual),
225            ..base_sampler_descriptor
226        }),
227        #[cfg(feature = "experimental_pbr_pcss")]
228        directional_light_linear_sampler: render_device.create_sampler(&base_sampler_descriptor),
229    });
230}
231
232// This is needed because of the orphan rule not allowing implementing
233// foreign trait ExtractComponent on foreign type ShadowFilteringMethod
234pub fn extract_shadow_filtering_method(
235    mut commands: Commands,
236    mut previous_len: Local<usize>,
237    query: Extract<Query<(RenderEntity, &ShadowFilteringMethod)>>,
238) {
239    let mut values = Vec::with_capacity(*previous_len);
240    for (entity, query_item) in &query {
241        values.push((entity, *query_item));
242    }
243    *previous_len = values.len();
244    commands.try_insert_batch(values);
245}
246
247// This is needed because of the orphan rule not allowing implementing
248// foreign trait ExtractResource on foreign type AmbientLight
249pub fn extract_ambient_light_resource(
250    mut commands: Commands,
251    main_resource: Extract<Option<Res<AmbientLight>>>,
252    target_resource: Option<ResMut<AmbientLight>>,
253) {
254    if let Some(main_resource) = main_resource.as_ref() {
255        if let Some(mut target_resource) = target_resource {
256            if main_resource.is_changed() {
257                *target_resource = (*main_resource).clone();
258            }
259        } else {
260            commands.insert_resource((*main_resource).clone());
261        }
262    }
263}
264
265// This is needed because of the orphan rule not allowing implementing
266// foreign trait ExtractComponent on foreign type AmbientLight
267pub fn extract_ambient_light(
268    mut commands: Commands,
269    mut previous_len: Local<usize>,
270    query: Extract<Query<(RenderEntity, &AmbientLight)>>,
271) {
272    let mut values = Vec::with_capacity(*previous_len);
273    for (entity, query_item) in &query {
274        values.push((entity, query_item.clone()));
275    }
276    *previous_len = values.len();
277    commands.try_insert_batch(values);
278}
279
280pub fn extract_lights(
281    mut commands: Commands,
282    point_light_shadow_map: Extract<Res<PointLightShadowMap>>,
283    directional_light_shadow_map: Extract<Res<DirectionalLightShadowMap>>,
284    global_visible_clusterable: Extract<Res<GlobalVisibleClusterableObjects>>,
285    previous_point_lights: Query<
286        Entity,
287        (
288            With<RenderCubemapVisibleEntities>,
289            With<ExtractedPointLight>,
290        ),
291    >,
292    previous_spot_lights: Query<
293        Entity,
294        (With<RenderVisibleMeshEntities>, With<ExtractedPointLight>),
295    >,
296    point_lights: Extract<
297        Query<(
298            Entity,
299            RenderEntity,
300            &PointLight,
301            &CubemapVisibleEntities,
302            &GlobalTransform,
303            &ViewVisibility,
304            &CubemapFrusta,
305            Option<&VolumetricLight>,
306        )>,
307    >,
308    spot_lights: Extract<
309        Query<(
310            Entity,
311            RenderEntity,
312            &SpotLight,
313            &VisibleMeshEntities,
314            &GlobalTransform,
315            &ViewVisibility,
316            &Frustum,
317            Option<&VolumetricLight>,
318        )>,
319    >,
320    directional_lights: Extract<
321        Query<
322            (
323                Entity,
324                RenderEntity,
325                &DirectionalLight,
326                &CascadesVisibleEntities,
327                &Cascades,
328                &CascadeShadowConfig,
329                &CascadesFrusta,
330                &GlobalTransform,
331                &ViewVisibility,
332                Option<&RenderLayers>,
333                Option<&VolumetricLight>,
334                Has<OcclusionCulling>,
335                Option<&SunDisk>,
336            ),
337            Without<SpotLight>,
338        >,
339    >,
340    mapper: Extract<Query<RenderEntity>>,
341    mut previous_point_lights_len: Local<usize>,
342    mut previous_spot_lights_len: Local<usize>,
343) {
344    // NOTE: These shadow map resources are extracted here as they are used here too so this avoids
345    // races between scheduling of ExtractResourceSystems and this system.
346    if point_light_shadow_map.is_changed() {
347        commands.insert_resource(point_light_shadow_map.clone());
348    }
349    if directional_light_shadow_map.is_changed() {
350        commands.insert_resource(directional_light_shadow_map.clone());
351    }
352
353    // Clear previous visible entities for all point/spot lights as they might not be in the
354    // `global_visible_clusterable` list anymore.
355    commands.try_insert_batch(
356        previous_point_lights
357            .iter()
358            .map(|render_entity| (render_entity, RenderCubemapVisibleEntities::default()))
359            .collect::<Vec<_>>(),
360    );
361    commands.try_insert_batch(
362        previous_spot_lights
363            .iter()
364            .map(|render_entity| (render_entity, RenderVisibleMeshEntities::default()))
365            .collect::<Vec<_>>(),
366    );
367
368    // This is the point light shadow map texel size for one face of the cube as a distance of 1.0
369    // world unit from the light.
370    // point_light_texel_size = 2.0 * 1.0 * tan(PI / 4.0) / cube face width in texels
371    // PI / 4.0 is half the cube face fov, tan(PI / 4.0) = 1.0, so this simplifies to:
372    // point_light_texel_size = 2.0 / cube face width in texels
373    // NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
374    // https://catlikecoding.com/unity/tutorials/custom-srp/point-and-spot-shadows/
375    let point_light_texel_size = 2.0 / point_light_shadow_map.size as f32;
376
377    let mut point_lights_values = Vec::with_capacity(*previous_point_lights_len);
378    for entity in global_visible_clusterable.iter().copied() {
379        let Ok((
380            main_entity,
381            render_entity,
382            point_light,
383            cubemap_visible_entities,
384            transform,
385            view_visibility,
386            frusta,
387            volumetric_light,
388        )) = point_lights.get(entity)
389        else {
390            continue;
391        };
392        if !view_visibility.get() {
393            continue;
394        }
395        let render_cubemap_visible_entities = RenderCubemapVisibleEntities {
396            data: cubemap_visible_entities
397                .iter()
398                .map(|v| create_render_visible_mesh_entities(&mapper, v))
399                .collect::<Vec<_>>()
400                .try_into()
401                .unwrap(),
402        };
403
404        let extracted_point_light = ExtractedPointLight {
405            color: point_light.color.into(),
406            // NOTE: Map from luminous power in lumens to luminous intensity in lumens per steradian
407            // for a point light. See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
408            // for details.
409            intensity: point_light.intensity / (4.0 * core::f32::consts::PI),
410            range: point_light.range,
411            radius: point_light.radius,
412            transform: *transform,
413            shadows_enabled: point_light.shadows_enabled,
414            shadow_depth_bias: point_light.shadow_depth_bias,
415            // The factor of SQRT_2 is for the worst-case diagonal offset
416            shadow_normal_bias: point_light.shadow_normal_bias
417                * point_light_texel_size
418                * core::f32::consts::SQRT_2,
419            shadow_map_near_z: point_light.shadow_map_near_z,
420            spot_light_angles: None,
421            volumetric: volumetric_light.is_some(),
422            affects_lightmapped_mesh_diffuse: point_light.affects_lightmapped_mesh_diffuse,
423            #[cfg(feature = "experimental_pbr_pcss")]
424            soft_shadows_enabled: point_light.soft_shadows_enabled,
425            #[cfg(not(feature = "experimental_pbr_pcss"))]
426            soft_shadows_enabled: false,
427        };
428        point_lights_values.push((
429            render_entity,
430            (
431                extracted_point_light,
432                render_cubemap_visible_entities,
433                (*frusta).clone(),
434                MainEntity::from(main_entity),
435            ),
436        ));
437    }
438    *previous_point_lights_len = point_lights_values.len();
439    commands.try_insert_batch(point_lights_values);
440
441    let mut spot_lights_values = Vec::with_capacity(*previous_spot_lights_len);
442    for entity in global_visible_clusterable.iter().copied() {
443        if let Ok((
444            main_entity,
445            render_entity,
446            spot_light,
447            visible_entities,
448            transform,
449            view_visibility,
450            frustum,
451            volumetric_light,
452        )) = spot_lights.get(entity)
453        {
454            if !view_visibility.get() {
455                continue;
456            }
457            let render_visible_entities =
458                create_render_visible_mesh_entities(&mapper, visible_entities);
459
460            let texel_size =
461                2.0 * ops::tan(spot_light.outer_angle) / directional_light_shadow_map.size as f32;
462
463            spot_lights_values.push((
464                render_entity,
465                (
466                    ExtractedPointLight {
467                        color: spot_light.color.into(),
468                        // NOTE: Map from luminous power in lumens to luminous intensity in lumens per steradian
469                        // for a point light. See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
470                        // for details.
471                        // Note: Filament uses a divisor of PI for spot lights. We choose to use the same 4*PI divisor
472                        // in both cases so that toggling between point light and spot light keeps lit areas lit equally,
473                        // which seems least surprising for users
474                        intensity: spot_light.intensity / (4.0 * core::f32::consts::PI),
475                        range: spot_light.range,
476                        radius: spot_light.radius,
477                        transform: *transform,
478                        shadows_enabled: spot_light.shadows_enabled,
479                        shadow_depth_bias: spot_light.shadow_depth_bias,
480                        // The factor of SQRT_2 is for the worst-case diagonal offset
481                        shadow_normal_bias: spot_light.shadow_normal_bias
482                            * texel_size
483                            * core::f32::consts::SQRT_2,
484                        shadow_map_near_z: spot_light.shadow_map_near_z,
485                        spot_light_angles: Some((spot_light.inner_angle, spot_light.outer_angle)),
486                        volumetric: volumetric_light.is_some(),
487                        affects_lightmapped_mesh_diffuse: spot_light
488                            .affects_lightmapped_mesh_diffuse,
489                        #[cfg(feature = "experimental_pbr_pcss")]
490                        soft_shadows_enabled: spot_light.soft_shadows_enabled,
491                        #[cfg(not(feature = "experimental_pbr_pcss"))]
492                        soft_shadows_enabled: false,
493                    },
494                    render_visible_entities,
495                    *frustum,
496                    MainEntity::from(main_entity),
497                ),
498            ));
499        }
500    }
501    *previous_spot_lights_len = spot_lights_values.len();
502    commands.try_insert_batch(spot_lights_values);
503
504    for (
505        main_entity,
506        entity,
507        directional_light,
508        visible_entities,
509        cascades,
510        cascade_config,
511        frusta,
512        transform,
513        view_visibility,
514        maybe_layers,
515        volumetric_light,
516        occlusion_culling,
517        sun_disk,
518    ) in &directional_lights
519    {
520        if !view_visibility.get() {
521            commands
522                .get_entity(entity)
523                .expect("Light entity wasn't synced.")
524                .remove::<(ExtractedDirectionalLight, RenderCascadesVisibleEntities)>();
525            continue;
526        }
527
528        // TODO: update in place instead of reinserting.
529        let mut extracted_cascades = EntityHashMap::default();
530        let mut extracted_frusta = EntityHashMap::default();
531        let mut cascade_visible_entities = EntityHashMap::default();
532        for (e, v) in cascades.cascades.iter() {
533            if let Ok(entity) = mapper.get(*e) {
534                extracted_cascades.insert(entity, v.clone());
535            } else {
536                break;
537            }
538        }
539        for (e, v) in frusta.frusta.iter() {
540            if let Ok(entity) = mapper.get(*e) {
541                extracted_frusta.insert(entity, v.clone());
542            } else {
543                break;
544            }
545        }
546        for (e, v) in visible_entities.entities.iter() {
547            if let Ok(entity) = mapper.get(*e) {
548                cascade_visible_entities.insert(
549                    entity,
550                    v.iter()
551                        .map(|v| create_render_visible_mesh_entities(&mapper, v))
552                        .collect(),
553                );
554            } else {
555                break;
556            }
557        }
558
559        commands
560            .get_entity(entity)
561            .expect("Light entity wasn't synced.")
562            .insert((
563                ExtractedDirectionalLight {
564                    color: directional_light.color.into(),
565                    illuminance: directional_light.illuminance,
566                    transform: *transform,
567                    volumetric: volumetric_light.is_some(),
568                    affects_lightmapped_mesh_diffuse: directional_light
569                        .affects_lightmapped_mesh_diffuse,
570                    #[cfg(feature = "experimental_pbr_pcss")]
571                    soft_shadow_size: directional_light.soft_shadow_size,
572                    #[cfg(not(feature = "experimental_pbr_pcss"))]
573                    soft_shadow_size: None,
574                    shadows_enabled: directional_light.shadows_enabled,
575                    shadow_depth_bias: directional_light.shadow_depth_bias,
576                    // The factor of SQRT_2 is for the worst-case diagonal offset
577                    shadow_normal_bias: directional_light.shadow_normal_bias
578                        * core::f32::consts::SQRT_2,
579                    cascade_shadow_config: cascade_config.clone(),
580                    cascades: extracted_cascades,
581                    frusta: extracted_frusta,
582                    render_layers: maybe_layers.unwrap_or_default().clone(),
583                    occlusion_culling,
584                    sun_disk_angular_size: sun_disk.unwrap_or_default().angular_size,
585                    sun_disk_intensity: sun_disk.unwrap_or_default().intensity,
586                },
587                RenderCascadesVisibleEntities {
588                    entities: cascade_visible_entities,
589                },
590                MainEntity::from(main_entity),
591            ));
592    }
593}
594
595fn create_render_visible_mesh_entities(
596    mapper: &Extract<Query<RenderEntity>>,
597    visible_entities: &VisibleMeshEntities,
598) -> RenderVisibleMeshEntities {
599    RenderVisibleMeshEntities {
600        entities: visible_entities
601            .iter()
602            .map(|e| {
603                let render_entity = mapper.get(*e).unwrap_or(Entity::PLACEHOLDER);
604                (render_entity, MainEntity::from(*e))
605            })
606            .collect(),
607    }
608}
609
610#[derive(Component, Default, Deref, DerefMut)]
611/// Component automatically attached to a light entity to track light-view entities
612/// for each view.
613pub struct LightViewEntities(EntityHashMap<Vec<Entity>>);
614
615// TODO: using required component
616pub(crate) fn add_light_view_entities(
617    add: On<Add, (ExtractedDirectionalLight, ExtractedPointLight)>,
618    mut commands: Commands,
619) {
620    if let Ok(mut v) = commands.get_entity(add.entity) {
621        v.insert(LightViewEntities::default());
622    }
623}
624
625/// Removes [`LightViewEntities`] when light is removed. See [`add_light_view_entities`].
626pub(crate) fn extracted_light_removed(
627    remove: On<Remove, (ExtractedDirectionalLight, ExtractedPointLight)>,
628    mut commands: Commands,
629) {
630    if let Ok(mut v) = commands.get_entity(remove.entity) {
631        v.try_remove::<LightViewEntities>();
632    }
633}
634
635pub(crate) fn remove_light_view_entities(
636    remove: On<Remove, LightViewEntities>,
637    query: Query<&LightViewEntities>,
638    mut commands: Commands,
639) {
640    if let Ok(entities) = query.get(remove.entity) {
641        for v in entities.0.values() {
642            for e in v.iter().copied() {
643                if let Ok(mut v) = commands.get_entity(e) {
644                    v.despawn();
645                }
646            }
647        }
648    }
649}
650
651#[derive(Component)]
652pub struct ShadowView {
653    pub depth_attachment: DepthAttachment,
654    pub pass_name: String,
655}
656
657#[derive(Component)]
658pub struct ViewShadowBindings {
659    pub point_light_depth_texture: Texture,
660    pub point_light_depth_texture_view: TextureView,
661    pub directional_light_depth_texture: Texture,
662    pub directional_light_depth_texture_view: TextureView,
663}
664
665/// A component that holds the shadow cascade views for all shadow cascades
666/// associated with a camera.
667///
668/// Note: Despite the name, this component actually holds the shadow cascade
669/// views, not the lights themselves.
670#[derive(Component)]
671pub struct ViewLightEntities {
672    /// The shadow cascade views for all shadow cascades associated with a
673    /// camera.
674    ///
675    /// Note: Despite the name, this component actually holds the shadow cascade
676    /// views, not the lights themselves.
677    pub lights: Vec<Entity>,
678}
679
680#[derive(Component)]
681pub struct ViewLightsUniformOffset {
682    pub offset: u32,
683}
684
685#[derive(Resource, Default)]
686pub struct LightMeta {
687    pub view_gpu_lights: DynamicUniformBuffer<GpuLights>,
688}
689
690#[derive(Component)]
691pub enum LightEntity {
692    Directional {
693        light_entity: Entity,
694        cascade_index: usize,
695    },
696    Point {
697        light_entity: Entity,
698        face_index: usize,
699    },
700    Spot {
701        light_entity: Entity,
702    },
703}
704
705pub fn prepare_lights(
706    mut commands: Commands,
707    mut texture_cache: ResMut<TextureCache>,
708    (render_device, render_queue): (Res<RenderDevice>, Res<RenderQueue>),
709    mut global_light_meta: ResMut<GlobalClusterableObjectMeta>,
710    mut light_meta: ResMut<LightMeta>,
711    views: Query<
712        (
713            Entity,
714            MainEntity,
715            &ExtractedView,
716            &ExtractedClusterConfig,
717            Option<&RenderLayers>,
718            Has<NoIndirectDrawing>,
719            Option<&AmbientLight>,
720        ),
721        With<Camera3d>,
722    >,
723    ambient_light: Res<AmbientLight>,
724    point_light_shadow_map: Res<PointLightShadowMap>,
725    directional_light_shadow_map: Res<DirectionalLightShadowMap>,
726    mut shadow_render_phases: ResMut<ViewBinnedRenderPhases<Shadow>>,
727    (
728        mut max_directional_lights_warning_emitted,
729        mut max_cascades_per_light_warning_emitted,
730        mut live_shadow_mapping_lights,
731    ): (Local<bool>, Local<bool>, Local<HashSet<RetainedViewEntity>>),
732    point_lights: Query<(
733        Entity,
734        &MainEntity,
735        &ExtractedPointLight,
736        AnyOf<(&CubemapFrusta, &Frustum)>,
737    )>,
738    directional_lights: Query<(Entity, &MainEntity, &ExtractedDirectionalLight)>,
739    mut light_view_entities: Query<&mut LightViewEntities>,
740    sorted_cameras: Res<SortedCameras>,
741    (gpu_preprocessing_support, decals): (
742        Res<GpuPreprocessingSupport>,
743        Option<Res<RenderClusteredDecals>>,
744    ),
745) {
746    let views_iter = views.iter();
747    let views_count = views_iter.len();
748    let Some(mut view_gpu_lights_writer) =
749        light_meta
750            .view_gpu_lights
751            .get_writer(views_count, &render_device, &render_queue)
752    else {
753        return;
754    };
755
756    // Pre-calculate for PointLights
757    let cube_face_rotations = CUBE_MAP_FACES
758        .iter()
759        .map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
760        .collect::<Vec<_>>();
761
762    global_light_meta.entity_to_index.clear();
763
764    let mut point_lights: Vec<_> = point_lights.iter().collect::<Vec<_>>();
765    let mut directional_lights: Vec<_> = directional_lights.iter().collect::<Vec<_>>();
766
767    #[cfg(any(
768        not(feature = "webgl"),
769        not(target_arch = "wasm32"),
770        feature = "webgpu"
771    ))]
772    let max_texture_array_layers = render_device.limits().max_texture_array_layers as usize;
773    #[cfg(any(
774        not(feature = "webgl"),
775        not(target_arch = "wasm32"),
776        feature = "webgpu"
777    ))]
778    let max_texture_cubes = max_texture_array_layers / 6;
779    #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
780    let max_texture_array_layers = 1;
781    #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
782    let max_texture_cubes = 1;
783
784    if !*max_directional_lights_warning_emitted && directional_lights.len() > MAX_DIRECTIONAL_LIGHTS
785    {
786        warn!(
787            "The amount of directional lights of {} is exceeding the supported limit of {}.",
788            directional_lights.len(),
789            MAX_DIRECTIONAL_LIGHTS
790        );
791        *max_directional_lights_warning_emitted = true;
792    }
793
794    if !*max_cascades_per_light_warning_emitted
795        && directional_lights
796            .iter()
797            .any(|(_, _, light)| light.cascade_shadow_config.bounds.len() > MAX_CASCADES_PER_LIGHT)
798    {
799        warn!(
800            "The number of cascades configured for a directional light exceeds the supported limit of {}.",
801            MAX_CASCADES_PER_LIGHT
802        );
803        *max_cascades_per_light_warning_emitted = true;
804    }
805
806    let point_light_count = point_lights
807        .iter()
808        .filter(|light| light.2.spot_light_angles.is_none())
809        .count();
810
811    let point_light_volumetric_enabled_count = point_lights
812        .iter()
813        .filter(|(_, _, light, _)| light.volumetric && light.spot_light_angles.is_none())
814        .count()
815        .min(max_texture_cubes);
816
817    let point_light_shadow_maps_count = point_lights
818        .iter()
819        .filter(|light| light.2.shadows_enabled && light.2.spot_light_angles.is_none())
820        .count()
821        .min(max_texture_cubes);
822
823    let directional_volumetric_enabled_count = directional_lights
824        .iter()
825        .take(MAX_DIRECTIONAL_LIGHTS)
826        .filter(|(_, _, light)| light.volumetric)
827        .count()
828        .min(max_texture_array_layers / MAX_CASCADES_PER_LIGHT);
829
830    let directional_shadow_enabled_count = directional_lights
831        .iter()
832        .take(MAX_DIRECTIONAL_LIGHTS)
833        .filter(|(_, _, light)| light.shadows_enabled)
834        .count()
835        .min(max_texture_array_layers / MAX_CASCADES_PER_LIGHT);
836
837    let spot_light_count = point_lights
838        .iter()
839        .filter(|(_, _, light, _)| light.spot_light_angles.is_some())
840        .count()
841        .min(max_texture_array_layers - directional_shadow_enabled_count * MAX_CASCADES_PER_LIGHT);
842
843    let spot_light_volumetric_enabled_count = point_lights
844        .iter()
845        .filter(|(_, _, light, _)| light.volumetric && light.spot_light_angles.is_some())
846        .count()
847        .min(max_texture_array_layers - directional_shadow_enabled_count * MAX_CASCADES_PER_LIGHT);
848
849    let spot_light_shadow_maps_count = point_lights
850        .iter()
851        .filter(|(_, _, light, _)| light.shadows_enabled && light.spot_light_angles.is_some())
852        .count()
853        .min(max_texture_array_layers - directional_shadow_enabled_count * MAX_CASCADES_PER_LIGHT);
854
855    // Sort lights by
856    // - point-light vs spot-light, so that we can iterate point lights and spot lights in contiguous blocks in the fragment shader,
857    // - then those with shadows enabled first, so that the index can be used to render at most `point_light_shadow_maps_count`
858    //   point light shadows and `spot_light_shadow_maps_count` spot light shadow maps,
859    // - then by entity as a stable key to ensure that a consistent set of lights are chosen if the light count limit is exceeded.
860    point_lights.sort_by_cached_key(|(entity, _, light, _)| {
861        (
862            point_or_spot_light_to_clusterable(light).ordering(),
863            *entity,
864        )
865    });
866
867    // Sort lights by
868    // - those with volumetric (and shadows) enabled first, so that the
869    //   volumetric lighting pass can quickly find the volumetric lights;
870    // - then those with shadows enabled second, so that the index can be used
871    //   to render at most `directional_light_shadow_maps_count` directional light
872    //   shadows
873    // - then by entity as a stable key to ensure that a consistent set of
874    //   lights are chosen if the light count limit is exceeded.
875    // - because entities are unique, we can use `sort_unstable_by_key`
876    //   and still end up with a stable order.
877    directional_lights.sort_unstable_by_key(|(entity, _, light)| {
878        (light.volumetric, light.shadows_enabled, *entity)
879    });
880
881    if global_light_meta.entity_to_index.capacity() < point_lights.len() {
882        global_light_meta
883            .entity_to_index
884            .reserve(point_lights.len());
885    }
886
887    let mut gpu_point_lights = Vec::new();
888    for (index, &(entity, _, light, _)) in point_lights.iter().enumerate() {
889        let mut flags = PointLightFlags::NONE;
890
891        // Lights are sorted, shadow enabled lights are first
892        if light.shadows_enabled
893            && (index < point_light_shadow_maps_count
894                || (light.spot_light_angles.is_some()
895                    && index - point_light_count < spot_light_shadow_maps_count))
896        {
897            flags |= PointLightFlags::SHADOWS_ENABLED;
898        }
899
900        let cube_face_projection = Mat4::perspective_infinite_reverse_rh(
901            core::f32::consts::FRAC_PI_2,
902            1.0,
903            light.shadow_map_near_z,
904        );
905        if light.shadows_enabled
906            && light.volumetric
907            && (index < point_light_volumetric_enabled_count
908                || (light.spot_light_angles.is_some()
909                    && index - point_light_count < spot_light_volumetric_enabled_count))
910        {
911            flags |= PointLightFlags::VOLUMETRIC;
912        }
913
914        if light.affects_lightmapped_mesh_diffuse {
915            flags |= PointLightFlags::AFFECTS_LIGHTMAPPED_MESH_DIFFUSE;
916        }
917
918        let (light_custom_data, spot_light_tan_angle) = match light.spot_light_angles {
919            Some((inner, outer)) => {
920                let light_direction = light.transform.forward();
921                if light_direction.y.is_sign_negative() {
922                    flags |= PointLightFlags::SPOT_LIGHT_Y_NEGATIVE;
923                }
924
925                let cos_outer = ops::cos(outer);
926                let spot_scale = 1.0 / f32::max(ops::cos(inner) - cos_outer, 1e-4);
927                let spot_offset = -cos_outer * spot_scale;
928
929                (
930                    // For spot lights: the direction (x,z), spot_scale and spot_offset
931                    light_direction.xz().extend(spot_scale).extend(spot_offset),
932                    ops::tan(outer),
933                )
934            }
935            None => {
936                (
937                    // For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
938                    Vec4::new(
939                        cube_face_projection.z_axis.z,
940                        cube_face_projection.z_axis.w,
941                        cube_face_projection.w_axis.z,
942                        cube_face_projection.w_axis.w,
943                    ),
944                    // unused
945                    0.0,
946                )
947            }
948        };
949
950        gpu_point_lights.push(GpuClusterableObject {
951            light_custom_data,
952            // premultiply color by intensity
953            // we don't use the alpha at all, so no reason to multiply only [0..3]
954            color_inverse_square_range: (Vec4::from_slice(&light.color.to_f32_array())
955                * light.intensity)
956                .xyz()
957                .extend(1.0 / (light.range * light.range)),
958            position_radius: light.transform.translation().extend(light.radius),
959            flags: flags.bits(),
960            shadow_depth_bias: light.shadow_depth_bias,
961            shadow_normal_bias: light.shadow_normal_bias,
962            shadow_map_near_z: light.shadow_map_near_z,
963            spot_light_tan_angle,
964            decal_index: decals
965                .as_ref()
966                .and_then(|decals| decals.get(entity))
967                .and_then(|index| index.try_into().ok())
968                .unwrap_or(u32::MAX),
969            pad: 0.0,
970            soft_shadow_size: if light.soft_shadows_enabled {
971                light.radius
972            } else {
973                0.0
974            },
975        });
976        global_light_meta.entity_to_index.insert(entity, index);
977    }
978
979    // iterate the views once to find the maximum number of cascade shadowmaps we will need
980    let mut num_directional_cascades_enabled = 0usize;
981    for (
982        _entity,
983        _camera_main_entity,
984        _extracted_view,
985        _clusters,
986        maybe_layers,
987        _no_indirect_drawing,
988        _maybe_ambient_override,
989    ) in sorted_cameras
990        .0
991        .iter()
992        .filter_map(|sorted_camera| views.get(sorted_camera.entity).ok())
993    {
994        let mut num_directional_cascades_for_this_view = 0usize;
995        let render_layers = maybe_layers.unwrap_or_default();
996
997        for (_light_entity, _, light) in directional_lights.iter() {
998            if light.shadows_enabled && light.render_layers.intersects(render_layers) {
999                num_directional_cascades_for_this_view += light
1000                    .cascade_shadow_config
1001                    .bounds
1002                    .len()
1003                    .min(MAX_CASCADES_PER_LIGHT);
1004            }
1005        }
1006
1007        num_directional_cascades_enabled = num_directional_cascades_enabled
1008            .max(num_directional_cascades_for_this_view)
1009            .min(max_texture_array_layers);
1010    }
1011
1012    global_light_meta
1013        .gpu_clusterable_objects
1014        .set(gpu_point_lights);
1015    global_light_meta
1016        .gpu_clusterable_objects
1017        .write_buffer(&render_device, &render_queue);
1018
1019    live_shadow_mapping_lights.clear();
1020
1021    let mut point_light_depth_attachments = HashMap::<u32, DepthAttachment>::default();
1022    let mut directional_light_depth_attachments = HashMap::<u32, DepthAttachment>::default();
1023
1024    let point_light_depth_texture = texture_cache.get(
1025        &render_device,
1026        TextureDescriptor {
1027            size: Extent3d {
1028                width: point_light_shadow_map.size as u32,
1029                height: point_light_shadow_map.size as u32,
1030                depth_or_array_layers: point_light_shadow_maps_count.max(1) as u32 * 6,
1031            },
1032            mip_level_count: 1,
1033            sample_count: 1,
1034            dimension: TextureDimension::D2,
1035            format: CORE_3D_DEPTH_FORMAT,
1036            label: Some("point_light_shadow_map_texture"),
1037            usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
1038            view_formats: &[],
1039        },
1040    );
1041
1042    let point_light_depth_texture_view =
1043        point_light_depth_texture
1044            .texture
1045            .create_view(&TextureViewDescriptor {
1046                label: Some("point_light_shadow_map_array_texture_view"),
1047                format: None,
1048                // NOTE: iOS Simulator is missing CubeArray support so we use Cube instead.
1049                // See https://github.com/bevyengine/bevy/pull/12052 - remove if support is added.
1050                #[cfg(all(
1051                    not(target_abi = "sim"),
1052                    any(
1053                        not(feature = "webgl"),
1054                        not(target_arch = "wasm32"),
1055                        feature = "webgpu"
1056                    )
1057                ))]
1058                dimension: Some(TextureViewDimension::CubeArray),
1059                #[cfg(any(
1060                    target_abi = "sim",
1061                    all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu"))
1062                ))]
1063                dimension: Some(TextureViewDimension::Cube),
1064                usage: None,
1065                aspect: TextureAspect::DepthOnly,
1066                base_mip_level: 0,
1067                mip_level_count: None,
1068                base_array_layer: 0,
1069                array_layer_count: None,
1070            });
1071
1072    let directional_light_depth_texture = texture_cache.get(
1073        &render_device,
1074        TextureDescriptor {
1075            size: Extent3d {
1076                width: (directional_light_shadow_map.size as u32)
1077                    .min(render_device.limits().max_texture_dimension_2d),
1078                height: (directional_light_shadow_map.size as u32)
1079                    .min(render_device.limits().max_texture_dimension_2d),
1080                depth_or_array_layers: (num_directional_cascades_enabled
1081                    + spot_light_shadow_maps_count)
1082                    .max(1) as u32,
1083            },
1084            mip_level_count: 1,
1085            sample_count: 1,
1086            dimension: TextureDimension::D2,
1087            format: CORE_3D_DEPTH_FORMAT,
1088            label: Some("directional_light_shadow_map_texture"),
1089            usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
1090            view_formats: &[],
1091        },
1092    );
1093
1094    let directional_light_depth_texture_view =
1095        directional_light_depth_texture
1096            .texture
1097            .create_view(&TextureViewDescriptor {
1098                label: Some("directional_light_shadow_map_array_texture_view"),
1099                format: None,
1100                #[cfg(any(
1101                    not(feature = "webgl"),
1102                    not(target_arch = "wasm32"),
1103                    feature = "webgpu"
1104                ))]
1105                dimension: Some(TextureViewDimension::D2Array),
1106                #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
1107                dimension: Some(TextureViewDimension::D2),
1108                usage: None,
1109                aspect: TextureAspect::DepthOnly,
1110                base_mip_level: 0,
1111                mip_level_count: None,
1112                base_array_layer: 0,
1113                array_layer_count: None,
1114            });
1115
1116    let mut live_views = EntityHashSet::with_capacity(views_count);
1117
1118    // set up light data for each view
1119    for (
1120        entity,
1121        camera_main_entity,
1122        extracted_view,
1123        clusters,
1124        maybe_layers,
1125        no_indirect_drawing,
1126        maybe_ambient_override,
1127    ) in sorted_cameras
1128        .0
1129        .iter()
1130        .filter_map(|sorted_camera| views.get(sorted_camera.entity).ok())
1131    {
1132        live_views.insert(entity);
1133
1134        let view_layers = maybe_layers.unwrap_or_default();
1135        let mut view_lights = Vec::new();
1136        let mut view_occlusion_culling_lights = Vec::new();
1137
1138        let gpu_preprocessing_mode = gpu_preprocessing_support.min(if !no_indirect_drawing {
1139            GpuPreprocessingMode::Culling
1140        } else {
1141            GpuPreprocessingMode::PreprocessingOnly
1142        });
1143
1144        let is_orthographic = extracted_view.clip_from_view.w_axis.w == 1.0;
1145        let cluster_factors_zw = calculate_cluster_factors(
1146            clusters.near,
1147            clusters.far,
1148            clusters.dimensions.z as f32,
1149            is_orthographic,
1150        );
1151
1152        let n_clusters = clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z;
1153        let ambient_light = maybe_ambient_override.unwrap_or(&ambient_light);
1154
1155        let mut gpu_directional_lights = [GpuDirectionalLight::default(); MAX_DIRECTIONAL_LIGHTS];
1156        let mut num_directional_cascades_enabled_for_this_view = 0usize;
1157        let mut num_directional_lights_for_this_view = 0usize;
1158        for (index, (light_entity, _, light)) in directional_lights
1159            .iter()
1160            .filter(|(_light_entity, _, light)| light.render_layers.intersects(view_layers))
1161            .enumerate()
1162            .take(MAX_DIRECTIONAL_LIGHTS)
1163        {
1164            num_directional_lights_for_this_view += 1;
1165
1166            let mut flags = DirectionalLightFlags::NONE;
1167
1168            // Lights are sorted, volumetric and shadow enabled lights are first
1169            if light.volumetric
1170                && light.shadows_enabled
1171                && (index < directional_volumetric_enabled_count)
1172            {
1173                flags |= DirectionalLightFlags::VOLUMETRIC;
1174            }
1175
1176            // Shadow enabled lights are second
1177            let mut num_cascades = 0;
1178            if light.shadows_enabled {
1179                let cascades = light
1180                    .cascade_shadow_config
1181                    .bounds
1182                    .len()
1183                    .min(MAX_CASCADES_PER_LIGHT);
1184
1185                if num_directional_cascades_enabled_for_this_view + cascades
1186                    <= max_texture_array_layers
1187                {
1188                    flags |= DirectionalLightFlags::SHADOWS_ENABLED;
1189                    num_cascades += cascades;
1190                }
1191            }
1192
1193            if light.affects_lightmapped_mesh_diffuse {
1194                flags |= DirectionalLightFlags::AFFECTS_LIGHTMAPPED_MESH_DIFFUSE;
1195            }
1196
1197            gpu_directional_lights[index] = GpuDirectionalLight {
1198                // Filled in later.
1199                cascades: [GpuDirectionalCascade::default(); MAX_CASCADES_PER_LIGHT],
1200                // premultiply color by illuminance
1201                // we don't use the alpha at all, so no reason to multiply only [0..3]
1202                color: Vec4::from_slice(&light.color.to_f32_array()) * light.illuminance,
1203                // direction is negated to be ready for N.L
1204                dir_to_light: light.transform.back().into(),
1205                flags: flags.bits(),
1206                soft_shadow_size: light.soft_shadow_size.unwrap_or_default(),
1207                shadow_depth_bias: light.shadow_depth_bias,
1208                shadow_normal_bias: light.shadow_normal_bias,
1209                num_cascades: num_cascades as u32,
1210                cascades_overlap_proportion: light.cascade_shadow_config.overlap_proportion,
1211                depth_texture_base_index: num_directional_cascades_enabled_for_this_view as u32,
1212                sun_disk_angular_size: light.sun_disk_angular_size,
1213                sun_disk_intensity: light.sun_disk_intensity,
1214                decal_index: decals
1215                    .as_ref()
1216                    .and_then(|decals| decals.get(*light_entity))
1217                    .and_then(|index| index.try_into().ok())
1218                    .unwrap_or(u32::MAX),
1219            };
1220            num_directional_cascades_enabled_for_this_view += num_cascades;
1221        }
1222
1223        let mut gpu_lights = GpuLights {
1224            directional_lights: gpu_directional_lights,
1225            ambient_color: Vec4::from_slice(&LinearRgba::from(ambient_light.color).to_f32_array())
1226                * ambient_light.brightness,
1227            cluster_factors: Vec4::new(
1228                clusters.dimensions.x as f32 / extracted_view.viewport.z as f32,
1229                clusters.dimensions.y as f32 / extracted_view.viewport.w as f32,
1230                cluster_factors_zw.x,
1231                cluster_factors_zw.y,
1232            ),
1233            cluster_dimensions: clusters.dimensions.extend(n_clusters),
1234            n_directional_lights: num_directional_lights_for_this_view as u32,
1235            // spotlight shadow maps are stored in the directional light array, starting at num_directional_cascades_enabled.
1236            // the spot lights themselves start in the light array at point_light_count. so to go from light
1237            // index to shadow map index, we need to subtract point light count and add directional shadowmap count.
1238            spot_light_shadowmap_offset: num_directional_cascades_enabled as i32
1239                - point_light_count as i32,
1240            ambient_light_affects_lightmapped_meshes: ambient_light.affects_lightmapped_meshes
1241                as u32,
1242        };
1243
1244        // TODO: this should select lights based on relevance to the view instead of the first ones that show up in a query
1245        for &(light_entity, light_main_entity, light, (point_light_frusta, _)) in point_lights
1246            .iter()
1247            // Lights are sorted, shadow enabled lights are first
1248            .take(point_light_count.min(max_texture_cubes))
1249        {
1250            let Ok(mut light_view_entities) = light_view_entities.get_mut(light_entity) else {
1251                continue;
1252            };
1253
1254            if !light.shadows_enabled {
1255                if let Some(entities) = light_view_entities.remove(&entity) {
1256                    despawn_entities(&mut commands, entities);
1257                }
1258                continue;
1259            }
1260
1261            let light_index = *global_light_meta
1262                .entity_to_index
1263                .get(&light_entity)
1264                .unwrap();
1265            // ignore scale because we don't want to effectively scale light radius and range
1266            // by applying those as a view transform to shadow map rendering of objects
1267            // and ignore rotation because we want the shadow map projections to align with the axes
1268            let view_translation = GlobalTransform::from_translation(light.transform.translation());
1269
1270            // for each face of a cube and each view we spawn a light entity
1271            let light_view_entities = light_view_entities
1272                .entry(entity)
1273                .or_insert_with(|| (0..6).map(|_| commands.spawn_empty().id()).collect());
1274
1275            let cube_face_projection = Mat4::perspective_infinite_reverse_rh(
1276                core::f32::consts::FRAC_PI_2,
1277                1.0,
1278                light.shadow_map_near_z,
1279            );
1280
1281            for (face_index, ((view_rotation, frustum), view_light_entity)) in cube_face_rotations
1282                .iter()
1283                .zip(&point_light_frusta.unwrap().frusta)
1284                .zip(light_view_entities.iter().copied())
1285                .enumerate()
1286            {
1287                let mut first = false;
1288                let base_array_layer = (light_index * 6 + face_index) as u32;
1289
1290                let depth_attachment = point_light_depth_attachments
1291                    .entry(base_array_layer)
1292                    .or_insert_with(|| {
1293                        first = true;
1294
1295                        let depth_texture_view =
1296                            point_light_depth_texture
1297                                .texture
1298                                .create_view(&TextureViewDescriptor {
1299                                    label: Some("point_light_shadow_map_texture_view"),
1300                                    format: None,
1301                                    dimension: Some(TextureViewDimension::D2),
1302                                    usage: None,
1303                                    aspect: TextureAspect::All,
1304                                    base_mip_level: 0,
1305                                    mip_level_count: None,
1306                                    base_array_layer,
1307                                    array_layer_count: Some(1u32),
1308                                });
1309
1310                        DepthAttachment::new(depth_texture_view, Some(0.0))
1311                    })
1312                    .clone();
1313
1314                let retained_view_entity = RetainedViewEntity::new(
1315                    *light_main_entity,
1316                    Some(camera_main_entity.into()),
1317                    face_index as u32,
1318                );
1319
1320                commands.entity(view_light_entity).insert((
1321                    ShadowView {
1322                        depth_attachment,
1323                        pass_name: format!(
1324                            "shadow_point_light_{}_{}",
1325                            light_index,
1326                            face_index_to_name(face_index)
1327                        ),
1328                    },
1329                    ExtractedView {
1330                        retained_view_entity,
1331                        viewport: UVec4::new(
1332                            0,
1333                            0,
1334                            point_light_shadow_map.size as u32,
1335                            point_light_shadow_map.size as u32,
1336                        ),
1337                        world_from_view: view_translation * *view_rotation,
1338                        clip_from_world: None,
1339                        clip_from_view: cube_face_projection,
1340                        hdr: false,
1341                        color_grading: Default::default(),
1342                    },
1343                    *frustum,
1344                    LightEntity::Point {
1345                        light_entity,
1346                        face_index,
1347                    },
1348                ));
1349
1350                if !matches!(gpu_preprocessing_mode, GpuPreprocessingMode::Culling) {
1351                    commands.entity(view_light_entity).insert(NoIndirectDrawing);
1352                }
1353
1354                view_lights.push(view_light_entity);
1355
1356                if first {
1357                    // Subsequent views with the same light entity will reuse the same shadow map
1358                    shadow_render_phases
1359                        .prepare_for_new_frame(retained_view_entity, gpu_preprocessing_mode);
1360                    live_shadow_mapping_lights.insert(retained_view_entity);
1361                }
1362            }
1363        }
1364
1365        // spot lights
1366        for (light_index, &(light_entity, light_main_entity, light, (_, spot_light_frustum))) in
1367            point_lights
1368                .iter()
1369                .skip(point_light_count)
1370                .take(spot_light_count)
1371                .enumerate()
1372        {
1373            let Ok(mut light_view_entities) = light_view_entities.get_mut(light_entity) else {
1374                continue;
1375            };
1376
1377            if !light.shadows_enabled {
1378                if let Some(entities) = light_view_entities.remove(&entity) {
1379                    despawn_entities(&mut commands, entities);
1380                }
1381                continue;
1382            }
1383
1384            let spot_world_from_view = spot_light_world_from_view(&light.transform);
1385            let spot_world_from_view = spot_world_from_view.into();
1386
1387            let angle = light.spot_light_angles.expect("lights should be sorted so that \
1388                [point_light_count..point_light_count + spot_light_shadow_maps_count] are spot lights").1;
1389            let spot_projection = spot_light_clip_from_view(angle, light.shadow_map_near_z);
1390
1391            let mut first = false;
1392            let base_array_layer = (num_directional_cascades_enabled + light_index) as u32;
1393
1394            let depth_attachment = directional_light_depth_attachments
1395                .entry(base_array_layer)
1396                .or_insert_with(|| {
1397                    first = true;
1398
1399                    let depth_texture_view = directional_light_depth_texture.texture.create_view(
1400                        &TextureViewDescriptor {
1401                            label: Some("spot_light_shadow_map_texture_view"),
1402                            format: None,
1403                            dimension: Some(TextureViewDimension::D2),
1404                            usage: None,
1405                            aspect: TextureAspect::All,
1406                            base_mip_level: 0,
1407                            mip_level_count: None,
1408                            base_array_layer,
1409                            array_layer_count: Some(1u32),
1410                        },
1411                    );
1412
1413                    DepthAttachment::new(depth_texture_view, Some(0.0))
1414                })
1415                .clone();
1416
1417            let light_view_entities = light_view_entities
1418                .entry(entity)
1419                .or_insert_with(|| vec![commands.spawn_empty().id()]);
1420
1421            let view_light_entity = light_view_entities[0];
1422
1423            let retained_view_entity =
1424                RetainedViewEntity::new(*light_main_entity, Some(camera_main_entity.into()), 0);
1425
1426            commands.entity(view_light_entity).insert((
1427                ShadowView {
1428                    depth_attachment,
1429                    pass_name: format!("shadow_spot_light_{light_index}"),
1430                },
1431                ExtractedView {
1432                    retained_view_entity,
1433                    viewport: UVec4::new(
1434                        0,
1435                        0,
1436                        directional_light_shadow_map.size as u32,
1437                        directional_light_shadow_map.size as u32,
1438                    ),
1439                    world_from_view: spot_world_from_view,
1440                    clip_from_view: spot_projection,
1441                    clip_from_world: None,
1442                    hdr: false,
1443                    color_grading: Default::default(),
1444                },
1445                *spot_light_frustum.unwrap(),
1446                LightEntity::Spot { light_entity },
1447            ));
1448
1449            if !matches!(gpu_preprocessing_mode, GpuPreprocessingMode::Culling) {
1450                commands.entity(view_light_entity).insert(NoIndirectDrawing);
1451            }
1452
1453            view_lights.push(view_light_entity);
1454
1455            if first {
1456                // Subsequent views with the same light entity will reuse the same shadow map
1457                shadow_render_phases
1458                    .prepare_for_new_frame(retained_view_entity, gpu_preprocessing_mode);
1459                live_shadow_mapping_lights.insert(retained_view_entity);
1460            }
1461        }
1462
1463        // directional lights
1464        // clear entities for lights that don't intersect the layer
1465        for &(light_entity, _, _) in directional_lights
1466            .iter()
1467            .filter(|(_, _, light)| !light.render_layers.intersects(view_layers))
1468        {
1469            let Ok(mut light_view_entities) = light_view_entities.get_mut(light_entity) else {
1470                continue;
1471            };
1472            if let Some(entities) = light_view_entities.remove(&entity) {
1473                despawn_entities(&mut commands, entities);
1474            }
1475        }
1476
1477        let mut directional_depth_texture_array_index = 0u32;
1478        for (light_index, &(light_entity, light_main_entity, light)) in directional_lights
1479            .iter()
1480            .filter(|(_, _, light)| light.render_layers.intersects(view_layers))
1481            .enumerate()
1482            .take(MAX_DIRECTIONAL_LIGHTS)
1483        {
1484            let Ok(mut light_view_entities) = light_view_entities.get_mut(light_entity) else {
1485                continue;
1486            };
1487
1488            let gpu_light = &mut gpu_lights.directional_lights[light_index];
1489
1490            // Only deal with cascades when shadows are enabled.
1491            if (gpu_light.flags & DirectionalLightFlags::SHADOWS_ENABLED.bits()) == 0u32 {
1492                if let Some(entities) = light_view_entities.remove(&entity) {
1493                    despawn_entities(&mut commands, entities);
1494                }
1495                continue;
1496            }
1497
1498            let cascades = light
1499                .cascades
1500                .get(&entity)
1501                .unwrap()
1502                .iter()
1503                .take(MAX_CASCADES_PER_LIGHT);
1504            let frusta = light
1505                .frusta
1506                .get(&entity)
1507                .unwrap()
1508                .iter()
1509                .take(MAX_CASCADES_PER_LIGHT);
1510
1511            let iter = cascades
1512                .zip(frusta)
1513                .zip(&light.cascade_shadow_config.bounds);
1514
1515            let light_view_entities = light_view_entities.entry(entity).or_insert_with(|| {
1516                (0..iter.len())
1517                    .map(|_| commands.spawn_empty().id())
1518                    .collect()
1519            });
1520            if light_view_entities.len() != iter.len() {
1521                let entities = core::mem::take(light_view_entities);
1522                despawn_entities(&mut commands, entities);
1523                light_view_entities.extend((0..iter.len()).map(|_| commands.spawn_empty().id()));
1524            }
1525
1526            for (cascade_index, (((cascade, frustum), bound), view_light_entity)) in
1527                iter.zip(light_view_entities.iter().copied()).enumerate()
1528            {
1529                gpu_lights.directional_lights[light_index].cascades[cascade_index] =
1530                    GpuDirectionalCascade {
1531                        clip_from_world: cascade.clip_from_world,
1532                        texel_size: cascade.texel_size,
1533                        far_bound: *bound,
1534                    };
1535
1536                let depth_texture_view =
1537                    directional_light_depth_texture
1538                        .texture
1539                        .create_view(&TextureViewDescriptor {
1540                            label: Some("directional_light_shadow_map_array_texture_view"),
1541                            format: None,
1542                            dimension: Some(TextureViewDimension::D2),
1543                            usage: None,
1544                            aspect: TextureAspect::All,
1545                            base_mip_level: 0,
1546                            mip_level_count: None,
1547                            base_array_layer: directional_depth_texture_array_index,
1548                            array_layer_count: Some(1u32),
1549                        });
1550
1551                // NOTE: For point and spotlights, we reuse the same depth attachment for all views.
1552                // However, for directional lights, we want a new depth attachment for each view,
1553                // so that the view is cleared for each view.
1554                let depth_attachment = DepthAttachment::new(depth_texture_view.clone(), Some(0.0));
1555
1556                directional_depth_texture_array_index += 1;
1557
1558                let mut frustum = *frustum;
1559                // Push the near clip plane out to infinity for directional lights
1560                frustum.half_spaces[4] =
1561                    HalfSpace::new(frustum.half_spaces[4].normal().extend(f32::INFINITY));
1562
1563                let retained_view_entity = RetainedViewEntity::new(
1564                    *light_main_entity,
1565                    Some(camera_main_entity.into()),
1566                    cascade_index as u32,
1567                );
1568
1569                commands.entity(view_light_entity).insert((
1570                    ShadowView {
1571                        depth_attachment,
1572                        pass_name: format!(
1573                            "shadow_directional_light_{light_index}_cascade_{cascade_index}"
1574                        ),
1575                    },
1576                    ExtractedView {
1577                        retained_view_entity,
1578                        viewport: UVec4::new(
1579                            0,
1580                            0,
1581                            directional_light_shadow_map.size as u32,
1582                            directional_light_shadow_map.size as u32,
1583                        ),
1584                        world_from_view: GlobalTransform::from(cascade.world_from_cascade),
1585                        clip_from_view: cascade.clip_from_cascade,
1586                        clip_from_world: Some(cascade.clip_from_world),
1587                        hdr: false,
1588                        color_grading: Default::default(),
1589                    },
1590                    frustum,
1591                    LightEntity::Directional {
1592                        light_entity,
1593                        cascade_index,
1594                    },
1595                ));
1596
1597                if !matches!(gpu_preprocessing_mode, GpuPreprocessingMode::Culling) {
1598                    commands.entity(view_light_entity).insert(NoIndirectDrawing);
1599                }
1600
1601                view_lights.push(view_light_entity);
1602
1603                // If this light is using occlusion culling, add the appropriate components.
1604                if light.occlusion_culling {
1605                    commands.entity(view_light_entity).insert((
1606                        OcclusionCulling,
1607                        OcclusionCullingSubview {
1608                            depth_texture_view,
1609                            depth_texture_size: directional_light_shadow_map.size as u32,
1610                        },
1611                    ));
1612                    view_occlusion_culling_lights.push(view_light_entity);
1613                }
1614
1615                // Subsequent views with the same light entity will **NOT** reuse the same shadow map
1616                // (Because the cascades are unique to each view)
1617                // TODO: Implement GPU culling for shadow passes.
1618                shadow_render_phases
1619                    .prepare_for_new_frame(retained_view_entity, gpu_preprocessing_mode);
1620                live_shadow_mapping_lights.insert(retained_view_entity);
1621            }
1622        }
1623
1624        commands.entity(entity).insert((
1625            ViewShadowBindings {
1626                point_light_depth_texture: point_light_depth_texture.texture.clone(),
1627                point_light_depth_texture_view: point_light_depth_texture_view.clone(),
1628                directional_light_depth_texture: directional_light_depth_texture.texture.clone(),
1629                directional_light_depth_texture_view: directional_light_depth_texture_view.clone(),
1630            },
1631            ViewLightEntities {
1632                lights: view_lights,
1633            },
1634            ViewLightsUniformOffset {
1635                offset: view_gpu_lights_writer.write(&gpu_lights),
1636            },
1637        ));
1638
1639        // Make a link from the camera to all shadow cascades with occlusion
1640        // culling enabled.
1641        if !view_occlusion_culling_lights.is_empty() {
1642            commands
1643                .entity(entity)
1644                .insert(OcclusionCullingSubviewEntities(
1645                    view_occlusion_culling_lights,
1646                ));
1647        }
1648    }
1649
1650    // Despawn light-view entities for views that no longer exist
1651    for mut entities in &mut light_view_entities {
1652        for (_, light_view_entities) in
1653            entities.extract_if(|entity, _| !live_views.contains(entity))
1654        {
1655            despawn_entities(&mut commands, light_view_entities);
1656        }
1657    }
1658
1659    shadow_render_phases.retain(|entity, _| live_shadow_mapping_lights.contains(entity));
1660}
1661
1662fn despawn_entities(commands: &mut Commands, entities: Vec<Entity>) {
1663    if entities.is_empty() {
1664        return;
1665    }
1666    commands.queue(move |world: &mut World| {
1667        for entity in entities {
1668            world.despawn(entity);
1669        }
1670    });
1671}
1672
1673// These will be extracted in the material extraction, which will also clear the needs_specialization
1674// collection.
1675pub fn check_light_entities_needing_specialization<M: Material>(
1676    needs_specialization: Query<Entity, (With<MeshMaterial3d<M>>, Changed<NotShadowCaster>)>,
1677    mesh_materials: Query<Entity, With<MeshMaterial3d<M>>>,
1678    mut entities_needing_specialization: ResMut<EntitiesNeedingSpecialization<M>>,
1679    mut removed_components: RemovedComponents<NotShadowCaster>,
1680) {
1681    for entity in &needs_specialization {
1682        entities_needing_specialization.push(entity);
1683    }
1684
1685    for removed in removed_components.read() {
1686        // Only require specialization if the entity still exists.
1687        if mesh_materials.contains(removed) {
1688            entities_needing_specialization.entities.push(removed);
1689        }
1690    }
1691}
1692
1693#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
1694pub struct LightKeyCache(HashMap<RetainedViewEntity, MeshPipelineKey>);
1695
1696#[derive(Resource, Deref, DerefMut, Default, Debug, Clone)]
1697pub struct LightSpecializationTicks(HashMap<RetainedViewEntity, Tick>);
1698
1699#[derive(Resource, Deref, DerefMut, Default)]
1700pub struct SpecializedShadowMaterialPipelineCache {
1701    // view light entity -> view pipeline cache
1702    #[deref]
1703    map: HashMap<RetainedViewEntity, SpecializedShadowMaterialViewPipelineCache>,
1704}
1705
1706#[derive(Deref, DerefMut, Default)]
1707pub struct SpecializedShadowMaterialViewPipelineCache {
1708    #[deref]
1709    map: MainEntityHashMap<(Tick, CachedRenderPipelineId)>,
1710}
1711
1712pub fn check_views_lights_need_specialization(
1713    view_lights: Query<&ViewLightEntities, With<ExtractedView>>,
1714    view_light_entities: Query<(&LightEntity, &ExtractedView)>,
1715    shadow_render_phases: Res<ViewBinnedRenderPhases<Shadow>>,
1716    mut light_key_cache: ResMut<LightKeyCache>,
1717    mut light_specialization_ticks: ResMut<LightSpecializationTicks>,
1718    ticks: SystemChangeTick,
1719) {
1720    for view_lights in &view_lights {
1721        for view_light_entity in view_lights.lights.iter().copied() {
1722            let Ok((light_entity, extracted_view_light)) =
1723                view_light_entities.get(view_light_entity)
1724            else {
1725                continue;
1726            };
1727            if !shadow_render_phases.contains_key(&extracted_view_light.retained_view_entity) {
1728                continue;
1729            }
1730
1731            let is_directional_light = matches!(light_entity, LightEntity::Directional { .. });
1732            let mut light_key = MeshPipelineKey::DEPTH_PREPASS;
1733            light_key.set(MeshPipelineKey::UNCLIPPED_DEPTH_ORTHO, is_directional_light);
1734            if let Some(current_key) =
1735                light_key_cache.get_mut(&extracted_view_light.retained_view_entity)
1736            {
1737                if *current_key != light_key {
1738                    light_key_cache.insert(extracted_view_light.retained_view_entity, light_key);
1739                    light_specialization_ticks
1740                        .insert(extracted_view_light.retained_view_entity, ticks.this_run());
1741                }
1742            } else {
1743                light_key_cache.insert(extracted_view_light.retained_view_entity, light_key);
1744                light_specialization_ticks
1745                    .insert(extracted_view_light.retained_view_entity, ticks.this_run());
1746            }
1747        }
1748    }
1749}
1750
1751pub fn specialize_shadows(
1752    prepass_pipeline: Res<PrepassPipeline>,
1753    (render_meshes, render_mesh_instances, render_materials, render_material_instances): (
1754        Res<RenderAssets<RenderMesh>>,
1755        Res<RenderMeshInstances>,
1756        Res<ErasedRenderAssets<PreparedMaterial>>,
1757        Res<RenderMaterialInstances>,
1758    ),
1759    shadow_render_phases: Res<ViewBinnedRenderPhases<Shadow>>,
1760    mut pipelines: ResMut<SpecializedMeshPipelines<PrepassPipelineSpecializer>>,
1761    pipeline_cache: Res<PipelineCache>,
1762    render_lightmaps: Res<RenderLightmaps>,
1763    view_lights: Query<(Entity, &ViewLightEntities), With<ExtractedView>>,
1764    view_light_entities: Query<(&LightEntity, &ExtractedView)>,
1765    point_light_entities: Query<&RenderCubemapVisibleEntities, With<ExtractedPointLight>>,
1766    directional_light_entities: Query<
1767        &RenderCascadesVisibleEntities,
1768        With<ExtractedDirectionalLight>,
1769    >,
1770    spot_light_entities: Query<&RenderVisibleMeshEntities, With<ExtractedPointLight>>,
1771    light_key_cache: Res<LightKeyCache>,
1772    mut specialized_material_pipeline_cache: ResMut<SpecializedShadowMaterialPipelineCache>,
1773    light_specialization_ticks: Res<LightSpecializationTicks>,
1774    entity_specialization_ticks: Res<EntitySpecializationTicks>,
1775    ticks: SystemChangeTick,
1776) {
1777    // Record the retained IDs of all shadow views so that we can expire old
1778    // pipeline IDs.
1779    let mut all_shadow_views: HashSet<RetainedViewEntity, FixedHasher> = HashSet::default();
1780
1781    for (entity, view_lights) in &view_lights {
1782        for view_light_entity in view_lights.lights.iter().copied() {
1783            let Ok((light_entity, extracted_view_light)) =
1784                view_light_entities.get(view_light_entity)
1785            else {
1786                continue;
1787            };
1788
1789            all_shadow_views.insert(extracted_view_light.retained_view_entity);
1790
1791            if !shadow_render_phases.contains_key(&extracted_view_light.retained_view_entity) {
1792                continue;
1793            }
1794            let Some(light_key) = light_key_cache.get(&extracted_view_light.retained_view_entity)
1795            else {
1796                continue;
1797            };
1798
1799            let visible_entities = match light_entity {
1800                LightEntity::Directional {
1801                    light_entity,
1802                    cascade_index,
1803                } => directional_light_entities
1804                    .get(*light_entity)
1805                    .expect("Failed to get directional light visible entities")
1806                    .entities
1807                    .get(&entity)
1808                    .expect("Failed to get directional light visible entities for view")
1809                    .get(*cascade_index)
1810                    .expect("Failed to get directional light visible entities for cascade"),
1811                LightEntity::Point {
1812                    light_entity,
1813                    face_index,
1814                } => point_light_entities
1815                    .get(*light_entity)
1816                    .expect("Failed to get point light visible entities")
1817                    .get(*face_index),
1818                LightEntity::Spot { light_entity } => spot_light_entities
1819                    .get(*light_entity)
1820                    .expect("Failed to get spot light visible entities"),
1821            };
1822
1823            // NOTE: Lights with shadow mapping disabled will have no visible entities
1824            // so no meshes will be queued
1825
1826            let view_tick = light_specialization_ticks
1827                .get(&extracted_view_light.retained_view_entity)
1828                .unwrap();
1829            let view_specialized_material_pipeline_cache = specialized_material_pipeline_cache
1830                .entry(extracted_view_light.retained_view_entity)
1831                .or_default();
1832
1833            for (_, visible_entity) in visible_entities.iter().copied() {
1834                let Some(material_instance) =
1835                    render_material_instances.instances.get(&visible_entity)
1836                else {
1837                    continue;
1838                };
1839
1840                let Some(mesh_instance) =
1841                    render_mesh_instances.render_mesh_queue_data(visible_entity)
1842                else {
1843                    continue;
1844                };
1845                let entity_tick = entity_specialization_ticks.get(&visible_entity).unwrap();
1846                let last_specialized_tick = view_specialized_material_pipeline_cache
1847                    .get(&visible_entity)
1848                    .map(|(tick, _)| *tick);
1849                let needs_specialization = last_specialized_tick.is_none_or(|tick| {
1850                    view_tick.is_newer_than(tick, ticks.this_run())
1851                        || entity_tick
1852                            .system_tick
1853                            .is_newer_than(tick, ticks.this_run())
1854                });
1855                if !needs_specialization {
1856                    continue;
1857                }
1858                let Some(material) = render_materials.get(material_instance.asset_id) else {
1859                    continue;
1860                };
1861                if !material.properties.shadows_enabled {
1862                    // If the material is not a shadow caster, we don't need to specialize it.
1863                    continue;
1864                }
1865                if !mesh_instance
1866                    .flags
1867                    .contains(RenderMeshInstanceFlags::SHADOW_CASTER)
1868                {
1869                    continue;
1870                }
1871                let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
1872                    continue;
1873                };
1874
1875                let mut mesh_key =
1876                    *light_key | MeshPipelineKey::from_bits_retain(mesh.key_bits.bits());
1877
1878                // Even though we don't use the lightmap in the shadow map, the
1879                // `SetMeshBindGroup` render command will bind the data for it. So
1880                // we need to include the appropriate flag in the mesh pipeline key
1881                // to ensure that the necessary bind group layout entries are
1882                // present.
1883                if render_lightmaps
1884                    .render_lightmaps
1885                    .contains_key(&visible_entity)
1886                {
1887                    mesh_key |= MeshPipelineKey::LIGHTMAPPED;
1888                }
1889
1890                mesh_key |= match material.properties.alpha_mode {
1891                    AlphaMode::Mask(_)
1892                    | AlphaMode::Blend
1893                    | AlphaMode::Premultiplied
1894                    | AlphaMode::Add
1895                    | AlphaMode::AlphaToCoverage => MeshPipelineKey::MAY_DISCARD,
1896                    _ => MeshPipelineKey::NONE,
1897                };
1898                let erased_key = ErasedMaterialPipelineKey {
1899                    mesh_key,
1900                    material_key: material.properties.material_key.clone(),
1901                    type_id: material_instance.asset_id.type_id(),
1902                };
1903                let material_pipeline_specializer = PrepassPipelineSpecializer {
1904                    pipeline: prepass_pipeline.clone(),
1905                    properties: material.properties.clone(),
1906                };
1907                let pipeline_id = pipelines.specialize(
1908                    &pipeline_cache,
1909                    &material_pipeline_specializer,
1910                    erased_key,
1911                    &mesh.layout,
1912                );
1913                let pipeline_id = match pipeline_id {
1914                    Ok(id) => id,
1915                    Err(err) => {
1916                        error!("{}", err);
1917                        continue;
1918                    }
1919                };
1920
1921                view_specialized_material_pipeline_cache
1922                    .insert(visible_entity, (ticks.this_run(), pipeline_id));
1923            }
1924        }
1925    }
1926
1927    // Delete specialized pipelines belonging to views that have expired.
1928    specialized_material_pipeline_cache.retain(|view, _| all_shadow_views.contains(view));
1929}
1930
1931/// For each shadow cascade, iterates over all the meshes "visible" from it and
1932/// adds them to [`BinnedRenderPhase`]s or [`SortedRenderPhase`]s as
1933/// appropriate.
1934pub fn queue_shadows(
1935    render_mesh_instances: Res<RenderMeshInstances>,
1936    render_materials: Res<ErasedRenderAssets<PreparedMaterial>>,
1937    render_material_instances: Res<RenderMaterialInstances>,
1938    mut shadow_render_phases: ResMut<ViewBinnedRenderPhases<Shadow>>,
1939    gpu_preprocessing_support: Res<GpuPreprocessingSupport>,
1940    mesh_allocator: Res<MeshAllocator>,
1941    view_lights: Query<(Entity, &ViewLightEntities, Option<&RenderLayers>), With<ExtractedView>>,
1942    view_light_entities: Query<(&LightEntity, &ExtractedView)>,
1943    point_light_entities: Query<&RenderCubemapVisibleEntities, With<ExtractedPointLight>>,
1944    directional_light_entities: Query<
1945        &RenderCascadesVisibleEntities,
1946        With<ExtractedDirectionalLight>,
1947    >,
1948    spot_light_entities: Query<&RenderVisibleMeshEntities, With<ExtractedPointLight>>,
1949    specialized_material_pipeline_cache: Res<SpecializedShadowMaterialPipelineCache>,
1950) {
1951    for (entity, view_lights, camera_layers) in &view_lights {
1952        for view_light_entity in view_lights.lights.iter().copied() {
1953            let Ok((light_entity, extracted_view_light)) =
1954                view_light_entities.get(view_light_entity)
1955            else {
1956                continue;
1957            };
1958            let Some(shadow_phase) =
1959                shadow_render_phases.get_mut(&extracted_view_light.retained_view_entity)
1960            else {
1961                continue;
1962            };
1963
1964            let Some(view_specialized_material_pipeline_cache) =
1965                specialized_material_pipeline_cache.get(&extracted_view_light.retained_view_entity)
1966            else {
1967                continue;
1968            };
1969
1970            let visible_entities = match light_entity {
1971                LightEntity::Directional {
1972                    light_entity,
1973                    cascade_index,
1974                } => directional_light_entities
1975                    .get(*light_entity)
1976                    .expect("Failed to get directional light visible entities")
1977                    .entities
1978                    .get(&entity)
1979                    .expect("Failed to get directional light visible entities for view")
1980                    .get(*cascade_index)
1981                    .expect("Failed to get directional light visible entities for cascade"),
1982                LightEntity::Point {
1983                    light_entity,
1984                    face_index,
1985                } => point_light_entities
1986                    .get(*light_entity)
1987                    .expect("Failed to get point light visible entities")
1988                    .get(*face_index),
1989                LightEntity::Spot { light_entity } => spot_light_entities
1990                    .get(*light_entity)
1991                    .expect("Failed to get spot light visible entities"),
1992            };
1993
1994            for (entity, main_entity) in visible_entities.iter().copied() {
1995                let Some((current_change_tick, pipeline_id)) =
1996                    view_specialized_material_pipeline_cache.get(&main_entity)
1997                else {
1998                    continue;
1999                };
2000
2001                let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(main_entity)
2002                else {
2003                    continue;
2004                };
2005                if !mesh_instance
2006                    .flags
2007                    .contains(RenderMeshInstanceFlags::SHADOW_CASTER)
2008                {
2009                    continue;
2010                }
2011
2012                let mesh_layers = mesh_instance
2013                    .shared
2014                    .render_layers
2015                    .as_ref()
2016                    .unwrap_or_default();
2017
2018                let camera_layers = camera_layers.unwrap_or_default();
2019
2020                if !camera_layers.intersects(mesh_layers) {
2021                    continue;
2022                }
2023
2024                // Skip the entity if it's cached in a bin and up to date.
2025                if shadow_phase.validate_cached_entity(main_entity, *current_change_tick) {
2026                    continue;
2027                }
2028
2029                let Some(material_instance) = render_material_instances.instances.get(&main_entity)
2030                else {
2031                    continue;
2032                };
2033                let Some(material) = render_materials.get(material_instance.asset_id) else {
2034                    continue;
2035                };
2036                let Some(draw_function) =
2037                    material.properties.get_draw_function(ShadowsDrawFunction)
2038                else {
2039                    continue;
2040                };
2041
2042                let (vertex_slab, index_slab) =
2043                    mesh_allocator.mesh_slabs(&mesh_instance.mesh_asset_id);
2044
2045                let batch_set_key = ShadowBatchSetKey {
2046                    pipeline: *pipeline_id,
2047                    draw_function,
2048                    material_bind_group_index: Some(material.binding.group.0),
2049                    vertex_slab: vertex_slab.unwrap_or_default(),
2050                    index_slab,
2051                };
2052
2053                shadow_phase.add(
2054                    batch_set_key,
2055                    ShadowBinKey {
2056                        asset_id: mesh_instance.mesh_asset_id.into(),
2057                    },
2058                    (entity, main_entity),
2059                    mesh_instance.current_uniform_index,
2060                    BinnedRenderPhaseType::mesh(
2061                        mesh_instance.should_batch(),
2062                        &gpu_preprocessing_support,
2063                    ),
2064                    *current_change_tick,
2065                );
2066            }
2067        }
2068    }
2069}
2070
2071pub struct Shadow {
2072    /// Determines which objects can be placed into a *batch set*.
2073    ///
2074    /// Objects in a single batch set can potentially be multi-drawn together,
2075    /// if it's enabled and the current platform supports it.
2076    pub batch_set_key: ShadowBatchSetKey,
2077    /// Information that separates items into bins.
2078    pub bin_key: ShadowBinKey,
2079    pub representative_entity: (Entity, MainEntity),
2080    pub batch_range: Range<u32>,
2081    pub extra_index: PhaseItemExtraIndex,
2082}
2083
2084/// Information that must be identical in order to place opaque meshes in the
2085/// same *batch set*.
2086///
2087/// A batch set is a set of batches that can be multi-drawn together, if
2088/// multi-draw is in use.
2089#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
2090pub struct ShadowBatchSetKey {
2091    /// The identifier of the render pipeline.
2092    pub pipeline: CachedRenderPipelineId,
2093
2094    /// The function used to draw.
2095    pub draw_function: DrawFunctionId,
2096
2097    /// The ID of a bind group specific to the material.
2098    ///
2099    /// In the case of PBR, this is the `MaterialBindGroupIndex`.
2100    pub material_bind_group_index: Option<u32>,
2101
2102    /// The ID of the slab of GPU memory that contains vertex data.
2103    ///
2104    /// For non-mesh items, you can fill this with 0 if your items can be
2105    /// multi-drawn, or with a unique value if they can't.
2106    pub vertex_slab: SlabId,
2107
2108    /// The ID of the slab of GPU memory that contains index data, if present.
2109    ///
2110    /// For non-mesh items, you can safely fill this with `None`.
2111    pub index_slab: Option<SlabId>,
2112}
2113
2114impl PhaseItemBatchSetKey for ShadowBatchSetKey {
2115    fn indexed(&self) -> bool {
2116        self.index_slab.is_some()
2117    }
2118}
2119
2120/// Data used to bin each object in the shadow map phase.
2121#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
2122pub struct ShadowBinKey {
2123    /// The object.
2124    pub asset_id: UntypedAssetId,
2125}
2126
2127impl PhaseItem for Shadow {
2128    #[inline]
2129    fn entity(&self) -> Entity {
2130        self.representative_entity.0
2131    }
2132
2133    fn main_entity(&self) -> MainEntity {
2134        self.representative_entity.1
2135    }
2136
2137    #[inline]
2138    fn draw_function(&self) -> DrawFunctionId {
2139        self.batch_set_key.draw_function
2140    }
2141
2142    #[inline]
2143    fn batch_range(&self) -> &Range<u32> {
2144        &self.batch_range
2145    }
2146
2147    #[inline]
2148    fn batch_range_mut(&mut self) -> &mut Range<u32> {
2149        &mut self.batch_range
2150    }
2151
2152    #[inline]
2153    fn extra_index(&self) -> PhaseItemExtraIndex {
2154        self.extra_index.clone()
2155    }
2156
2157    #[inline]
2158    fn batch_range_and_extra_index_mut(&mut self) -> (&mut Range<u32>, &mut PhaseItemExtraIndex) {
2159        (&mut self.batch_range, &mut self.extra_index)
2160    }
2161}
2162
2163impl BinnedPhaseItem for Shadow {
2164    type BatchSetKey = ShadowBatchSetKey;
2165    type BinKey = ShadowBinKey;
2166
2167    #[inline]
2168    fn new(
2169        batch_set_key: Self::BatchSetKey,
2170        bin_key: Self::BinKey,
2171        representative_entity: (Entity, MainEntity),
2172        batch_range: Range<u32>,
2173        extra_index: PhaseItemExtraIndex,
2174    ) -> Self {
2175        Shadow {
2176            batch_set_key,
2177            bin_key,
2178            representative_entity,
2179            batch_range,
2180            extra_index,
2181        }
2182    }
2183}
2184
2185impl CachedRenderPipelinePhaseItem for Shadow {
2186    #[inline]
2187    fn cached_pipeline(&self) -> CachedRenderPipelineId {
2188        self.batch_set_key.pipeline
2189    }
2190}
2191
2192/// The rendering node that renders meshes that were "visible" (so to speak)
2193/// from a light last frame.
2194///
2195/// If occlusion culling for a light is disabled, then this node simply renders
2196/// all meshes in range of the light.
2197#[derive(Deref, DerefMut)]
2198pub struct EarlyShadowPassNode(ShadowPassNode);
2199
2200/// The rendering node that renders meshes that became newly "visible" (so to
2201/// speak) from a light this frame.
2202///
2203/// If occlusion culling for a light is disabled, then this node does nothing.
2204#[derive(Deref, DerefMut)]
2205pub struct LateShadowPassNode(ShadowPassNode);
2206
2207/// Encapsulates rendering logic shared between the early and late shadow pass
2208/// nodes.
2209pub struct ShadowPassNode {
2210    /// The query that finds cameras in which shadows are visible.
2211    main_view_query: QueryState<Read<ViewLightEntities>>,
2212    /// The query that finds shadow cascades.
2213    view_light_query: QueryState<(Read<ShadowView>, Read<ExtractedView>, Has<OcclusionCulling>)>,
2214}
2215
2216impl FromWorld for EarlyShadowPassNode {
2217    fn from_world(world: &mut World) -> Self {
2218        Self(ShadowPassNode::from_world(world))
2219    }
2220}
2221
2222impl FromWorld for LateShadowPassNode {
2223    fn from_world(world: &mut World) -> Self {
2224        Self(ShadowPassNode::from_world(world))
2225    }
2226}
2227
2228impl FromWorld for ShadowPassNode {
2229    fn from_world(world: &mut World) -> Self {
2230        Self {
2231            main_view_query: QueryState::new(world),
2232            view_light_query: QueryState::new(world),
2233        }
2234    }
2235}
2236
2237impl Node for EarlyShadowPassNode {
2238    fn update(&mut self, world: &mut World) {
2239        self.0.update(world);
2240    }
2241
2242    fn run<'w>(
2243        &self,
2244        graph: &mut RenderGraphContext,
2245        render_context: &mut RenderContext<'w>,
2246        world: &'w World,
2247    ) -> Result<(), NodeRunError> {
2248        self.0.run(graph, render_context, world, false)
2249    }
2250}
2251
2252impl Node for LateShadowPassNode {
2253    fn update(&mut self, world: &mut World) {
2254        self.0.update(world);
2255    }
2256
2257    fn run<'w>(
2258        &self,
2259        graph: &mut RenderGraphContext,
2260        render_context: &mut RenderContext<'w>,
2261        world: &'w World,
2262    ) -> Result<(), NodeRunError> {
2263        self.0.run(graph, render_context, world, true)
2264    }
2265}
2266
2267impl ShadowPassNode {
2268    fn update(&mut self, world: &mut World) {
2269        self.main_view_query.update_archetypes(world);
2270        self.view_light_query.update_archetypes(world);
2271    }
2272
2273    /// Runs the node logic.
2274    ///
2275    /// `is_late` is true if this is the late shadow pass or false if this is
2276    /// the early shadow pass.
2277    fn run<'w>(
2278        &self,
2279        graph: &mut RenderGraphContext,
2280        render_context: &mut RenderContext<'w>,
2281        world: &'w World,
2282        is_late: bool,
2283    ) -> Result<(), NodeRunError> {
2284        let Some(shadow_render_phases) = world.get_resource::<ViewBinnedRenderPhases<Shadow>>()
2285        else {
2286            return Ok(());
2287        };
2288
2289        if let Ok(view_lights) = self.main_view_query.get_manual(world, graph.view_entity()) {
2290            for view_light_entity in view_lights.lights.iter().copied() {
2291                let Ok((view_light, extracted_light_view, occlusion_culling)) =
2292                    self.view_light_query.get_manual(world, view_light_entity)
2293                else {
2294                    continue;
2295                };
2296
2297                // There's no need for a late shadow pass if the light isn't
2298                // using occlusion culling.
2299                if is_late && !occlusion_culling {
2300                    continue;
2301                }
2302
2303                let Some(shadow_phase) =
2304                    shadow_render_phases.get(&extracted_light_view.retained_view_entity)
2305                else {
2306                    continue;
2307                };
2308
2309                let depth_stencil_attachment =
2310                    Some(view_light.depth_attachment.get_attachment(StoreOp::Store));
2311
2312                let diagnostics = render_context.diagnostic_recorder();
2313                render_context.add_command_buffer_generation_task(move |render_device| {
2314                    #[cfg(feature = "trace")]
2315                    let _shadow_pass_span = info_span!("", "{}", view_light.pass_name).entered();
2316                    let mut command_encoder =
2317                        render_device.create_command_encoder(&CommandEncoderDescriptor {
2318                            label: Some("shadow_pass_command_encoder"),
2319                        });
2320
2321                    let render_pass = command_encoder.begin_render_pass(&RenderPassDescriptor {
2322                        label: Some(&view_light.pass_name),
2323                        color_attachments: &[],
2324                        depth_stencil_attachment,
2325                        timestamp_writes: None,
2326                        occlusion_query_set: None,
2327                    });
2328
2329                    let mut render_pass = TrackedRenderPass::new(&render_device, render_pass);
2330                    let pass_span =
2331                        diagnostics.pass_span(&mut render_pass, view_light.pass_name.clone());
2332
2333                    if let Err(err) =
2334                        shadow_phase.render(&mut render_pass, world, view_light_entity)
2335                    {
2336                        error!("Error encountered while rendering the shadow phase {err:?}");
2337                    }
2338
2339                    pass_span.end(&mut render_pass);
2340                    drop(render_pass);
2341                    command_encoder.finish()
2342                });
2343            }
2344        }
2345
2346        Ok(())
2347    }
2348}
2349
2350/// Creates the [`ClusterableObjectType`] data for a point or spot light.
2351fn point_or_spot_light_to_clusterable(point_light: &ExtractedPointLight) -> ClusterableObjectType {
2352    match point_light.spot_light_angles {
2353        Some((_, outer_angle)) => ClusterableObjectType::SpotLight {
2354            outer_angle,
2355            shadows_enabled: point_light.shadows_enabled,
2356            volumetric: point_light.volumetric,
2357        },
2358        None => ClusterableObjectType::PointLight {
2359            shadows_enabled: point_light.shadows_enabled,
2360            volumetric: point_light.volumetric,
2361        },
2362    }
2363}