1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
use crate::{
    MaterialBindGroupId, NotShadowCaster, NotShadowReceiver, PreviousGlobalTransform, Shadow,
    ViewFogUniformOffset, ViewLightProbesUniformOffset, ViewLightsUniformOffset,
    CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT, MAX_CASCADES_PER_LIGHT, MAX_DIRECTIONAL_LIGHTS,
};
use bevy_app::{Plugin, PostUpdate};
use bevy_asset::{load_internal_asset, AssetId, Handle};
use bevy_core_pipeline::{
    core_3d::{AlphaMask3d, Opaque3d, Transmissive3d, Transparent3d, CORE_3D_DEPTH_FORMAT},
    deferred::{AlphaMask3dDeferred, Opaque3dDeferred},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::entity::EntityHashMap;
use bevy_ecs::{
    prelude::*,
    query::ROQueryItem,
    system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3, Rect, UVec2, Vec4};
use bevy_render::{
    batching::{
        batch_and_prepare_render_phase, write_batched_instance_buffer, GetBatchData,
        NoAutomaticBatching,
    },
    mesh::*,
    render_asset::RenderAssets,
    render_phase::{PhaseItem, RenderCommand, RenderCommandResult, TrackedRenderPass},
    render_resource::*,
    renderer::{RenderDevice, RenderQueue},
    texture::{
        BevyDefault, DefaultImageSampler, GpuImage, Image, ImageSampler, TextureFormatPixelInfo,
    },
    view::{ViewTarget, ViewUniformOffset, ViewVisibility},
    Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{tracing::error, Entry, HashMap, Hashed};
use std::cell::Cell;
use thread_local::ThreadLocal;

#[cfg(debug_assertions)]
use bevy_utils::warn_once;

use crate::render::{
    morph::{
        extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices, MorphUniform,
    },
    skin::{extract_skins, no_automatic_skin_batching, prepare_skins, SkinUniform},
    MeshLayouts,
};
use crate::*;

use self::irradiance_volume::IRRADIANCE_VOLUMES_ARE_USABLE;

use super::skin::SkinIndices;

#[derive(Default)]
pub struct MeshRenderPlugin;

pub const FORWARD_IO_HANDLE: Handle<Shader> = Handle::weak_from_u128(2645551199423808407);
pub const MESH_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8140454348013264787);
pub const MESH_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(9076678235888822571);
pub const MESH_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(2506024101911992377);
pub const MESH_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(16831548636314682308);
pub const MESH_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6300874327833745635);
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
pub const SKINNING_HANDLE: Handle<Shader> = Handle::weak_from_u128(13215291596265391738);
pub const MORPH_HANDLE: Handle<Shader> = Handle::weak_from_u128(970982813587607345);

/// How many textures are allowed in the view bind group layout (`@group(0)`) before
/// broader compatibility with WebGL and WebGPU is at risk, due to the minimum guaranteed
/// values for `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) and `maxSampledTexturesPerShaderStage` (in WebGPU),
/// currently both at 16.
///
/// We use 10 here because it still leaves us, in a worst case scenario, with 6 textures for the other bind groups.
///
/// See: <https://gpuweb.github.io/gpuweb/#limits>
#[cfg(debug_assertions)]
pub const MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES: usize = 10;

impl Plugin for MeshRenderPlugin {
    fn build(&self, app: &mut App) {
        load_internal_asset!(app, FORWARD_IO_HANDLE, "forward_io.wgsl", Shader::from_wgsl);
        load_internal_asset!(
            app,
            MESH_VIEW_TYPES_HANDLE,
            "mesh_view_types.wgsl",
            Shader::from_wgsl_with_defs,
            vec![
                ShaderDefVal::UInt(
                    "MAX_DIRECTIONAL_LIGHTS".into(),
                    MAX_DIRECTIONAL_LIGHTS as u32
                ),
                ShaderDefVal::UInt(
                    "MAX_CASCADES_PER_LIGHT".into(),
                    MAX_CASCADES_PER_LIGHT as u32,
                )
            ]
        );
        load_internal_asset!(
            app,
            MESH_VIEW_BINDINGS_HANDLE,
            "mesh_view_bindings.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
        load_internal_asset!(
            app,
            MESH_FUNCTIONS_HANDLE,
            "mesh_functions.wgsl",
            Shader::from_wgsl
        );
        load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
        load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
        load_internal_asset!(app, MORPH_HANDLE, "morph.wgsl", Shader::from_wgsl);

        app.add_systems(
            PostUpdate,
            (no_automatic_skin_batching, no_automatic_morph_batching),
        );

        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            render_app
                .init_resource::<RenderMeshInstances>()
                .init_resource::<MeshBindGroups>()
                .init_resource::<SkinUniform>()
                .init_resource::<SkinIndices>()
                .init_resource::<MorphUniform>()
                .init_resource::<MorphIndices>()
                .allow_ambiguous_resource::<GpuArrayBuffer<MeshUniform>>()
                .add_systems(
                    ExtractSchedule,
                    (extract_meshes, extract_skins, extract_morphs),
                )
                .add_systems(
                    Render,
                    (
                        (
                            batch_and_prepare_render_phase::<Opaque3d, MeshPipeline>,
                            batch_and_prepare_render_phase::<Transmissive3d, MeshPipeline>,
                            batch_and_prepare_render_phase::<Transparent3d, MeshPipeline>,
                            batch_and_prepare_render_phase::<AlphaMask3d, MeshPipeline>,
                            batch_and_prepare_render_phase::<Shadow, MeshPipeline>,
                            batch_and_prepare_render_phase::<Opaque3dDeferred, MeshPipeline>,
                            batch_and_prepare_render_phase::<AlphaMask3dDeferred, MeshPipeline>,
                        )
                            .in_set(RenderSet::PrepareResources),
                        write_batched_instance_buffer::<MeshPipeline>
                            .in_set(RenderSet::PrepareResourcesFlush),
                        prepare_skins.in_set(RenderSet::PrepareResources),
                        prepare_morphs.in_set(RenderSet::PrepareResources),
                        prepare_mesh_bind_group.in_set(RenderSet::PrepareBindGroups),
                        prepare_mesh_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
                    ),
                );
        }
    }

    fn finish(&self, app: &mut App) {
        let mut mesh_bindings_shader_defs = Vec::with_capacity(1);

        if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
            if let Some(per_object_buffer_batch_size) = GpuArrayBuffer::<MeshUniform>::batch_size(
                render_app.world.resource::<RenderDevice>(),
            ) {
                mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
                    "PER_OBJECT_BUFFER_BATCH_SIZE".into(),
                    per_object_buffer_batch_size,
                ));
            }

            render_app
                .insert_resource(GpuArrayBuffer::<MeshUniform>::new(
                    render_app.world.resource::<RenderDevice>(),
                ))
                .init_resource::<MeshPipeline>();
        }

        // Load the mesh_bindings shader module here as it depends on runtime information about
        // whether storage buffers are supported, or the maximum uniform buffer binding size.
        load_internal_asset!(
            app,
            MESH_BINDINGS_HANDLE,
            "mesh_bindings.wgsl",
            Shader::from_wgsl_with_defs,
            mesh_bindings_shader_defs
        );
    }
}

#[derive(Component)]
pub struct MeshTransforms {
    pub transform: Affine3,
    pub previous_transform: Affine3,
    pub flags: u32,
}

#[derive(ShaderType, Clone)]
pub struct MeshUniform {
    // Affine 4x3 matrices transposed to 3x4
    pub transform: [Vec4; 3],
    pub previous_transform: [Vec4; 3],
    // Four 16-bit unsigned normalized UV values packed into a `UVec2`:
    //
    //                         <--- MSB                   LSB --->
    //                         +---- min v ----+ +---- min u ----+
    //     lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
    //                         +---- max v ----+ +---- max u ----+
    //     lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
    //
    // (MSB: most significant bit; LSB: least significant bit.)
    pub lightmap_uv_rect: UVec2,
    // 3x3 matrix packed in mat2x4 and f32 as:
    //   [0].xyz, [1].x,
    //   [1].yz, [2].xy
    //   [2].z
    pub inverse_transpose_model_a: [Vec4; 2],
    pub inverse_transpose_model_b: f32,
    pub flags: u32,
}

impl MeshUniform {
    pub fn new(mesh_transforms: &MeshTransforms, maybe_lightmap_uv_rect: Option<Rect>) -> Self {
        let (inverse_transpose_model_a, inverse_transpose_model_b) =
            mesh_transforms.transform.inverse_transpose_3x3();
        Self {
            transform: mesh_transforms.transform.to_transpose(),
            previous_transform: mesh_transforms.previous_transform.to_transpose(),
            lightmap_uv_rect: lightmap::pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
            inverse_transpose_model_a,
            inverse_transpose_model_b,
            flags: mesh_transforms.flags,
        }
    }
}

// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
bitflags::bitflags! {
    #[repr(transparent)]
    pub struct MeshFlags: u32 {
        const SHADOW_RECEIVER             = 1 << 0;
        const TRANSMITTED_SHADOW_RECEIVER = 1 << 1;
        // Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
        // then the flag should be set, else it should not be set.
        const SIGN_DETERMINANT_MODEL_3X3  = 1 << 31;
        const NONE                        = 0;
        const UNINITIALIZED               = 0xFFFF;
    }
}

pub struct RenderMeshInstance {
    pub transforms: MeshTransforms,
    pub mesh_asset_id: AssetId<Mesh>,
    pub material_bind_group_id: MaterialBindGroupId,
    pub shadow_caster: bool,
    pub automatic_batching: bool,
}

impl RenderMeshInstance {
    pub fn should_batch(&self) -> bool {
        self.automatic_batching && self.material_bind_group_id.is_some()
    }
}

#[derive(Default, Resource, Deref, DerefMut)]
pub struct RenderMeshInstances(EntityHashMap<RenderMeshInstance>);

pub fn extract_meshes(
    mut render_mesh_instances: ResMut<RenderMeshInstances>,
    mut thread_local_queues: Local<ThreadLocal<Cell<Vec<(Entity, RenderMeshInstance)>>>>,
    meshes_query: Extract<
        Query<(
            Entity,
            &ViewVisibility,
            &GlobalTransform,
            Option<&PreviousGlobalTransform>,
            &Handle<Mesh>,
            Has<NotShadowReceiver>,
            Has<TransmittedShadowReceiver>,
            Has<NotShadowCaster>,
            Has<NoAutomaticBatching>,
        )>,
    >,
) {
    meshes_query.par_iter().for_each(
        |(
            entity,
            view_visibility,
            transform,
            previous_transform,
            handle,
            not_shadow_receiver,
            transmitted_receiver,
            not_shadow_caster,
            no_automatic_batching,
        )| {
            if !view_visibility.get() {
                return;
            }
            let transform = transform.affine();
            let previous_transform = previous_transform.map(|t| t.0).unwrap_or(transform);
            let mut flags = if not_shadow_receiver {
                MeshFlags::empty()
            } else {
                MeshFlags::SHADOW_RECEIVER
            };
            if transmitted_receiver {
                flags |= MeshFlags::TRANSMITTED_SHADOW_RECEIVER;
            }
            if transform.matrix3.determinant().is_sign_positive() {
                flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
            }
            let transforms = MeshTransforms {
                transform: (&transform).into(),
                previous_transform: (&previous_transform).into(),
                flags: flags.bits(),
            };
            let tls = thread_local_queues.get_or_default();
            let mut queue = tls.take();
            queue.push((
                entity,
                RenderMeshInstance {
                    mesh_asset_id: handle.id(),
                    transforms,
                    shadow_caster: !not_shadow_caster,
                    material_bind_group_id: MaterialBindGroupId::default(),
                    automatic_batching: !no_automatic_batching,
                },
            ));
            tls.set(queue);
        },
    );

    render_mesh_instances.clear();
    for queue in thread_local_queues.iter_mut() {
        render_mesh_instances.extend(queue.get_mut().drain(..));
    }
}

#[derive(Resource, Clone)]
pub struct MeshPipeline {
    view_layouts: [MeshPipelineViewLayout; MeshPipelineViewLayoutKey::COUNT],
    // This dummy white texture is to be used in place of optional StandardMaterial textures
    pub dummy_white_gpu_image: GpuImage,
    pub clustered_forward_buffer_binding_type: BufferBindingType,
    pub mesh_layouts: MeshLayouts,
    /// `MeshUniform`s are stored in arrays in buffers. If storage buffers are available, they
    /// are used and this will be `None`, otherwise uniform buffers will be used with batches
    /// of this many `MeshUniform`s, stored at dynamic offsets within the uniform buffer.
    /// Use code like this in custom shaders:
    /// ```wgsl
    /// ##ifdef PER_OBJECT_BUFFER_BATCH_SIZE
    /// @group(1) @binding(0) var<uniform> mesh: array<Mesh, #{PER_OBJECT_BUFFER_BATCH_SIZE}u>;
    /// ##else
    /// @group(1) @binding(0) var<storage> mesh: array<Mesh>;
    /// ##endif // PER_OBJECT_BUFFER_BATCH_SIZE
    /// ```
    pub per_object_buffer_batch_size: Option<u32>,

    /// Whether binding arrays (a.k.a. bindless textures) are usable on the
    /// current render device.
    ///
    /// This affects whether reflection probes can be used.
    pub binding_arrays_are_usable: bool,
}

impl FromWorld for MeshPipeline {
    fn from_world(world: &mut World) -> Self {
        let mut system_state: SystemState<(
            Res<RenderDevice>,
            Res<DefaultImageSampler>,
            Res<RenderQueue>,
        )> = SystemState::new(world);
        let (render_device, default_sampler, render_queue) = system_state.get_mut(world);
        let clustered_forward_buffer_binding_type = render_device
            .get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);

        let view_layouts =
            generate_view_layouts(&render_device, clustered_forward_buffer_binding_type);

        // A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
        let dummy_white_gpu_image = {
            let image = Image::default();
            let texture = render_device.create_texture(&image.texture_descriptor);
            let sampler = match image.sampler {
                ImageSampler::Default => (**default_sampler).clone(),
                ImageSampler::Descriptor(ref descriptor) => {
                    render_device.create_sampler(&descriptor.as_wgpu())
                }
            };

            let format_size = image.texture_descriptor.format.pixel_size();
            render_queue.write_texture(
                texture.as_image_copy(),
                &image.data,
                ImageDataLayout {
                    offset: 0,
                    bytes_per_row: Some(image.width() * format_size as u32),
                    rows_per_image: None,
                },
                image.texture_descriptor.size,
            );

            let texture_view = texture.create_view(&TextureViewDescriptor::default());
            GpuImage {
                texture,
                texture_view,
                texture_format: image.texture_descriptor.format,
                sampler,
                size: image.size_f32(),
                mip_level_count: image.texture_descriptor.mip_level_count,
            }
        };

        MeshPipeline {
            view_layouts,
            clustered_forward_buffer_binding_type,
            dummy_white_gpu_image,
            mesh_layouts: MeshLayouts::new(&render_device),
            per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
            binding_arrays_are_usable: binding_arrays_are_usable(&render_device),
        }
    }
}

impl MeshPipeline {
    pub fn get_image_texture<'a>(
        &'a self,
        gpu_images: &'a RenderAssets<Image>,
        handle_option: &Option<Handle<Image>>,
    ) -> Option<(&'a TextureView, &'a Sampler)> {
        if let Some(handle) = handle_option {
            let gpu_image = gpu_images.get(handle)?;
            Some((&gpu_image.texture_view, &gpu_image.sampler))
        } else {
            Some((
                &self.dummy_white_gpu_image.texture_view,
                &self.dummy_white_gpu_image.sampler,
            ))
        }
    }

    pub fn get_view_layout(&self, layout_key: MeshPipelineViewLayoutKey) -> &BindGroupLayout {
        let index = layout_key.bits() as usize;
        let layout = &self.view_layouts[index];

        #[cfg(debug_assertions)]
        if layout.texture_count > MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES {
            // Issue our own warning here because Naga's error message is a bit cryptic in this situation
            warn_once!("Too many textures in mesh pipeline view layout, this might cause us to hit `wgpu::Limits::max_sampled_textures_per_shader_stage` in some environments.");
        }

        &layout.bind_group_layout
    }
}

impl GetBatchData for MeshPipeline {
    type Param = (SRes<RenderMeshInstances>, SRes<RenderLightmaps>);
    // The material bind group ID, the mesh ID, and the lightmap ID,
    // respectively.
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>, Option<AssetId<Image>>);

    type BufferData = MeshUniform;

    fn get_batch_data(
        (mesh_instances, lightmaps): &SystemParamItem<Self::Param>,
        entity: Entity,
    ) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
        let mesh_instance = mesh_instances.get(&entity)?;
        let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);

        Some((
            MeshUniform::new(
                &mesh_instance.transforms,
                maybe_lightmap.map(|lightmap| lightmap.uv_rect),
            ),
            mesh_instance.should_batch().then_some((
                mesh_instance.material_bind_group_id,
                mesh_instance.mesh_asset_id,
                maybe_lightmap.map(|lightmap| lightmap.image),
            )),
        ))
    }
}

bitflags::bitflags! {
    #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
    #[repr(transparent)]
    // NOTE: Apparently quadro drivers support up to 64x MSAA.
    /// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
    pub struct MeshPipelineKey: u32 {
        const NONE                              = 0;
        const HDR                               = 1 << 0;
        const TONEMAP_IN_SHADER                 = 1 << 1;
        const DEBAND_DITHER                     = 1 << 2;
        const DEPTH_PREPASS                     = 1 << 3;
        const NORMAL_PREPASS                    = 1 << 4;
        const DEFERRED_PREPASS                  = 1 << 5;
        const MOTION_VECTOR_PREPASS             = 1 << 6;
        const MAY_DISCARD                       = 1 << 7; // Guards shader codepaths that may discard, allowing early depth tests in most cases
                                                            // See: https://www.khronos.org/opengl/wiki/Early_Fragment_Test
        const ENVIRONMENT_MAP                   = 1 << 8;
        const SCREEN_SPACE_AMBIENT_OCCLUSION    = 1 << 9;
        const DEPTH_CLAMP_ORTHO                 = 1 << 10;
        const TEMPORAL_JITTER                   = 1 << 11;
        const MORPH_TARGETS                     = 1 << 12;
        const READS_VIEW_TRANSMISSION_TEXTURE   = 1 << 13;
        const LIGHTMAPPED                       = 1 << 14;
        const IRRADIANCE_VOLUME                 = 1 << 15;
        const BLEND_RESERVED_BITS               = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
        const BLEND_OPAQUE                      = 0 << Self::BLEND_SHIFT_BITS;                   // ← Values are just sequential within the mask, and can range from 0 to 3
        const BLEND_PREMULTIPLIED_ALPHA         = 1 << Self::BLEND_SHIFT_BITS;                   //
        const BLEND_MULTIPLY                    = 2 << Self::BLEND_SHIFT_BITS;                   // ← We still have room for one more value without adding more bits
        const BLEND_ALPHA                       = 3 << Self::BLEND_SHIFT_BITS;
        const MSAA_RESERVED_BITS                = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
        const PRIMITIVE_TOPOLOGY_RESERVED_BITS  = Self::PRIMITIVE_TOPOLOGY_MASK_BITS << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
        const TONEMAP_METHOD_RESERVED_BITS      = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_NONE               = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_REINHARD           = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_ACES_FITTED        = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_AGX                = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_TONY_MC_MAPFACE     = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const TONEMAP_METHOD_BLENDER_FILMIC      = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
        const SHADOW_FILTER_METHOD_RESERVED_BITS = Self::SHADOW_FILTER_METHOD_MASK_BITS << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
        const SHADOW_FILTER_METHOD_HARDWARE_2X2  = 0 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
        const SHADOW_FILTER_METHOD_CASTANO_13    = 1 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
        const SHADOW_FILTER_METHOD_JIMENEZ_14    = 2 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
        const VIEW_PROJECTION_RESERVED_BITS     = Self::VIEW_PROJECTION_MASK_BITS << Self::VIEW_PROJECTION_SHIFT_BITS;
        const VIEW_PROJECTION_NONSTANDARD       = 0 << Self::VIEW_PROJECTION_SHIFT_BITS;
        const VIEW_PROJECTION_PERSPECTIVE       = 1 << Self::VIEW_PROJECTION_SHIFT_BITS;
        const VIEW_PROJECTION_ORTHOGRAPHIC      = 2 << Self::VIEW_PROJECTION_SHIFT_BITS;
        const VIEW_PROJECTION_RESERVED          = 3 << Self::VIEW_PROJECTION_SHIFT_BITS;
        const SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS = Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
        const SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW = 0 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
        const SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM = 1 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
        const SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH = 2 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
        const SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA = 3 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
    }
}

impl MeshPipelineKey {
    const MSAA_MASK_BITS: u32 = 0b111;
    const MSAA_SHIFT_BITS: u32 = 32 - Self::MSAA_MASK_BITS.count_ones();

    const PRIMITIVE_TOPOLOGY_MASK_BITS: u32 = 0b111;
    const PRIMITIVE_TOPOLOGY_SHIFT_BITS: u32 =
        Self::MSAA_SHIFT_BITS - Self::PRIMITIVE_TOPOLOGY_MASK_BITS.count_ones();

    const BLEND_MASK_BITS: u32 = 0b11;
    const BLEND_SHIFT_BITS: u32 =
        Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS - Self::BLEND_MASK_BITS.count_ones();

    const TONEMAP_METHOD_MASK_BITS: u32 = 0b111;
    const TONEMAP_METHOD_SHIFT_BITS: u32 =
        Self::BLEND_SHIFT_BITS - Self::TONEMAP_METHOD_MASK_BITS.count_ones();

    const SHADOW_FILTER_METHOD_MASK_BITS: u32 = 0b11;
    const SHADOW_FILTER_METHOD_SHIFT_BITS: u32 =
        Self::TONEMAP_METHOD_SHIFT_BITS - Self::SHADOW_FILTER_METHOD_MASK_BITS.count_ones();

    const VIEW_PROJECTION_MASK_BITS: u32 = 0b11;
    const VIEW_PROJECTION_SHIFT_BITS: u32 =
        Self::SHADOW_FILTER_METHOD_SHIFT_BITS - Self::VIEW_PROJECTION_MASK_BITS.count_ones();

    const SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS: u32 = 0b11;
    const SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS: u32 = Self::VIEW_PROJECTION_SHIFT_BITS
        - Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS.count_ones();

    pub fn from_msaa_samples(msaa_samples: u32) -> Self {
        let msaa_bits =
            (msaa_samples.trailing_zeros() & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
        Self::from_bits_retain(msaa_bits)
    }

    pub fn from_hdr(hdr: bool) -> Self {
        if hdr {
            MeshPipelineKey::HDR
        } else {
            MeshPipelineKey::NONE
        }
    }

    pub fn msaa_samples(&self) -> u32 {
        1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
    }

    pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
        let primitive_topology_bits = ((primitive_topology as u32)
            & Self::PRIMITIVE_TOPOLOGY_MASK_BITS)
            << Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
        Self::from_bits_retain(primitive_topology_bits)
    }

    pub fn primitive_topology(&self) -> PrimitiveTopology {
        let primitive_topology_bits = (self.bits() >> Self::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
            & Self::PRIMITIVE_TOPOLOGY_MASK_BITS;
        match primitive_topology_bits {
            x if x == PrimitiveTopology::PointList as u32 => PrimitiveTopology::PointList,
            x if x == PrimitiveTopology::LineList as u32 => PrimitiveTopology::LineList,
            x if x == PrimitiveTopology::LineStrip as u32 => PrimitiveTopology::LineStrip,
            x if x == PrimitiveTopology::TriangleList as u32 => PrimitiveTopology::TriangleList,
            x if x == PrimitiveTopology::TriangleStrip as u32 => PrimitiveTopology::TriangleStrip,
            _ => PrimitiveTopology::default(),
        }
    }
}

fn is_skinned(layout: &Hashed<InnerMeshVertexBufferLayout>) -> bool {
    layout.contains(Mesh::ATTRIBUTE_JOINT_INDEX) && layout.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
}
pub fn setup_morph_and_skinning_defs(
    mesh_layouts: &MeshLayouts,
    layout: &Hashed<InnerMeshVertexBufferLayout>,
    offset: u32,
    key: &MeshPipelineKey,
    shader_defs: &mut Vec<ShaderDefVal>,
    vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
) -> BindGroupLayout {
    let mut add_skin_data = || {
        shader_defs.push("SKINNED".into());
        vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
        vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
    };
    let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
    let is_lightmapped = key.intersects(MeshPipelineKey::LIGHTMAPPED);
    match (is_skinned(layout), is_morphed, is_lightmapped) {
        (true, false, _) => {
            add_skin_data();
            mesh_layouts.skinned.clone()
        }
        (true, true, _) => {
            add_skin_data();
            shader_defs.push("MORPH_TARGETS".into());
            mesh_layouts.morphed_skinned.clone()
        }
        (false, true, _) => {
            shader_defs.push("MORPH_TARGETS".into());
            mesh_layouts.morphed.clone()
        }
        (false, false, true) => mesh_layouts.lightmapped.clone(),
        (false, false, false) => mesh_layouts.model_only.clone(),
    }
}

impl SpecializedMeshPipeline for MeshPipeline {
    type Key = MeshPipelineKey;

    fn specialize(
        &self,
        key: Self::Key,
        layout: &MeshVertexBufferLayout,
    ) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
        let mut shader_defs = Vec::new();
        let mut vertex_attributes = Vec::new();

        // Let the shader code know that it's running in a mesh pipeline.
        shader_defs.push("MESH_PIPELINE".into());

        shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());

        if layout.contains(Mesh::ATTRIBUTE_POSITION) {
            shader_defs.push("VERTEX_POSITIONS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
        }

        if layout.contains(Mesh::ATTRIBUTE_NORMAL) {
            shader_defs.push("VERTEX_NORMALS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
        }

        if layout.contains(Mesh::ATTRIBUTE_UV_0) {
            shader_defs.push("VERTEX_UVS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
        }

        if layout.contains(Mesh::ATTRIBUTE_UV_1) {
            shader_defs.push("VERTEX_UVS_B".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
        }

        if layout.contains(Mesh::ATTRIBUTE_TANGENT) {
            shader_defs.push("VERTEX_TANGENTS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
        }

        if layout.contains(Mesh::ATTRIBUTE_COLOR) {
            shader_defs.push("VERTEX_COLORS".into());
            vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
        }

        if cfg!(feature = "pbr_transmission_textures") {
            shader_defs.push("PBR_TRANSMISSION_TEXTURES_SUPPORTED".into());
        }

        let mut bind_group_layout = vec![self.get_view_layout(key.into()).clone()];

        if key.msaa_samples() > 1 {
            shader_defs.push("MULTISAMPLED".into());
        };

        bind_group_layout.push(setup_morph_and_skinning_defs(
            &self.mesh_layouts,
            layout,
            6,
            &key,
            &mut shader_defs,
            &mut vertex_attributes,
        ));

        if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
            shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
        }

        let vertex_buffer_layout = layout.get_layout(&vertex_attributes)?;

        let (label, blend, depth_write_enabled);
        let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
        let mut is_opaque = false;
        if pass == MeshPipelineKey::BLEND_ALPHA {
            label = "alpha_blend_mesh_pipeline".into();
            blend = Some(BlendState::ALPHA_BLENDING);
            // For the transparent pass, fragments that are closer will be alpha blended
            // but their depth is not written to the depth buffer
            depth_write_enabled = false;
        } else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
            label = "premultiplied_alpha_mesh_pipeline".into();
            blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
            shader_defs.push("PREMULTIPLY_ALPHA".into());
            shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
            // For the transparent pass, fragments that are closer will be alpha blended
            // but their depth is not written to the depth buffer
            depth_write_enabled = false;
        } else if pass == MeshPipelineKey::BLEND_MULTIPLY {
            label = "multiply_mesh_pipeline".into();
            blend = Some(BlendState {
                color: BlendComponent {
                    src_factor: BlendFactor::Dst,
                    dst_factor: BlendFactor::OneMinusSrcAlpha,
                    operation: BlendOperation::Add,
                },
                alpha: BlendComponent::OVER,
            });
            shader_defs.push("PREMULTIPLY_ALPHA".into());
            shader_defs.push("BLEND_MULTIPLY".into());
            // For the multiply pass, fragments that are closer will be alpha blended
            // but their depth is not written to the depth buffer
            depth_write_enabled = false;
        } else {
            label = "opaque_mesh_pipeline".into();
            // BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
            blend = None;
            // For the opaque and alpha mask passes, fragments that are closer will replace
            // the current fragment value in the output and the depth is written to the
            // depth buffer
            depth_write_enabled = true;
            is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
        }

        if key.contains(MeshPipelineKey::NORMAL_PREPASS) {
            shader_defs.push("NORMAL_PREPASS".into());
        }

        if key.contains(MeshPipelineKey::DEPTH_PREPASS) {
            shader_defs.push("DEPTH_PREPASS".into());
        }

        if key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
            shader_defs.push("MOTION_VECTOR_PREPASS".into());
        }

        if key.contains(MeshPipelineKey::DEFERRED_PREPASS) {
            shader_defs.push("DEFERRED_PREPASS".into());
        }

        if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
            shader_defs.push("LOAD_PREPASS_NORMALS".into());
        }

        let view_projection = key.intersection(MeshPipelineKey::VIEW_PROJECTION_RESERVED_BITS);
        if view_projection == MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD {
            shader_defs.push("VIEW_PROJECTION_NONSTANDARD".into());
        } else if view_projection == MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE {
            shader_defs.push("VIEW_PROJECTION_PERSPECTIVE".into());
        } else if view_projection == MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC {
            shader_defs.push("VIEW_PROJECTION_ORTHOGRAPHIC".into());
        }

        #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
        shader_defs.push("WEBGL2".into());

        if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
            shader_defs.push("TONEMAP_IN_SHADER".into());

            let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);

            if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
                shader_defs.push("TONEMAP_METHOD_NONE".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
                shader_defs.push("TONEMAP_METHOD_REINHARD".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
                shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
                shader_defs.push("TONEMAP_METHOD_ACES_FITTED ".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
                shader_defs.push("TONEMAP_METHOD_AGX".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
                shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
                shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
            } else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
                shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
            }

            // Debanding is tied to tonemapping in the shader, cannot run without it.
            if key.contains(MeshPipelineKey::DEBAND_DITHER) {
                shader_defs.push("DEBAND_DITHER".into());
            }
        }

        if key.contains(MeshPipelineKey::MAY_DISCARD) {
            shader_defs.push("MAY_DISCARD".into());
        }

        if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
            shader_defs.push("ENVIRONMENT_MAP".into());
        }

        if key.contains(MeshPipelineKey::IRRADIANCE_VOLUME) && IRRADIANCE_VOLUMES_ARE_USABLE {
            shader_defs.push("IRRADIANCE_VOLUME".into());
        }

        if key.contains(MeshPipelineKey::LIGHTMAPPED) {
            shader_defs.push("LIGHTMAP".into());
        }

        if key.contains(MeshPipelineKey::TEMPORAL_JITTER) {
            shader_defs.push("TEMPORAL_JITTER".into());
        }

        let shadow_filter_method =
            key.intersection(MeshPipelineKey::SHADOW_FILTER_METHOD_RESERVED_BITS);
        if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2 {
            shader_defs.push("SHADOW_FILTER_METHOD_HARDWARE_2X2".into());
        } else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_CASTANO_13 {
            shader_defs.push("SHADOW_FILTER_METHOD_CASTANO_13".into());
        } else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_JIMENEZ_14 {
            shader_defs.push("SHADOW_FILTER_METHOD_JIMENEZ_14".into());
        }

        let blur_quality =
            key.intersection(MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS);

        shader_defs.push(ShaderDefVal::Int(
            "SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS".into(),
            match blur_quality {
                MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW => 4,
                MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM => 8,
                MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH => 16,
                MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA => 32,
                _ => unreachable!(), // Not possible, since the mask is 2 bits, and we've covered all 4 cases
            },
        ));

        if self.binding_arrays_are_usable {
            shader_defs.push("MULTIPLE_LIGHT_PROBES_IN_ARRAY".into());
        }

        if IRRADIANCE_VOLUMES_ARE_USABLE {
            shader_defs.push("IRRADIANCE_VOLUMES_ARE_USABLE".into());
        }

        let format = if key.contains(MeshPipelineKey::HDR) {
            ViewTarget::TEXTURE_FORMAT_HDR
        } else {
            TextureFormat::bevy_default()
        };

        // This is defined here so that custom shaders that use something other than
        // the mesh binding from bevy_pbr::mesh_bindings can easily make use of this
        // in their own shaders.
        if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
            shader_defs.push(ShaderDefVal::UInt(
                "PER_OBJECT_BUFFER_BATCH_SIZE".into(),
                per_object_buffer_batch_size,
            ));
        }

        let mut push_constant_ranges = Vec::with_capacity(1);
        if cfg!(all(
            feature = "webgl",
            target_arch = "wasm32",
            not(feature = "webgpu")
        )) {
            push_constant_ranges.push(PushConstantRange {
                stages: ShaderStages::VERTEX,
                range: 0..4,
            });
        }

        Ok(RenderPipelineDescriptor {
            vertex: VertexState {
                shader: MESH_SHADER_HANDLE,
                entry_point: "vertex".into(),
                shader_defs: shader_defs.clone(),
                buffers: vec![vertex_buffer_layout],
            },
            fragment: Some(FragmentState {
                shader: MESH_SHADER_HANDLE,
                shader_defs,
                entry_point: "fragment".into(),
                targets: vec![Some(ColorTargetState {
                    format,
                    blend,
                    write_mask: ColorWrites::ALL,
                })],
            }),
            layout: bind_group_layout,
            push_constant_ranges,
            primitive: PrimitiveState {
                front_face: FrontFace::Ccw,
                cull_mode: Some(Face::Back),
                unclipped_depth: false,
                polygon_mode: PolygonMode::Fill,
                conservative: false,
                topology: key.primitive_topology(),
                strip_index_format: None,
            },
            depth_stencil: Some(DepthStencilState {
                format: CORE_3D_DEPTH_FORMAT,
                depth_write_enabled,
                depth_compare: CompareFunction::GreaterEqual,
                stencil: StencilState {
                    front: StencilFaceState::IGNORE,
                    back: StencilFaceState::IGNORE,
                    read_mask: 0,
                    write_mask: 0,
                },
                bias: DepthBiasState {
                    constant: 0,
                    slope_scale: 0.0,
                    clamp: 0.0,
                },
            }),
            multisample: MultisampleState {
                count: key.msaa_samples(),
                mask: !0,
                alpha_to_coverage_enabled: false,
            },
            label: Some(label),
        })
    }
}

/// Bind groups for meshes currently loaded.
#[derive(Resource, Default)]
pub struct MeshBindGroups {
    model_only: Option<BindGroup>,
    skinned: Option<BindGroup>,
    morph_targets: HashMap<AssetId<Mesh>, BindGroup>,
    lightmaps: HashMap<AssetId<Image>, BindGroup>,
}
impl MeshBindGroups {
    pub fn reset(&mut self) {
        self.model_only = None;
        self.skinned = None;
        self.morph_targets.clear();
        self.lightmaps.clear();
    }
    /// Get the `BindGroup` for `GpuMesh` with given `handle_id` and lightmap
    /// key `lightmap`.
    pub fn get(
        &self,
        asset_id: AssetId<Mesh>,
        lightmap: Option<AssetId<Image>>,
        is_skinned: bool,
        morph: bool,
    ) -> Option<&BindGroup> {
        match (is_skinned, morph, lightmap) {
            (_, true, _) => self.morph_targets.get(&asset_id),
            (true, false, _) => self.skinned.as_ref(),
            (false, false, Some(lightmap)) => self.lightmaps.get(&lightmap),
            (false, false, None) => self.model_only.as_ref(),
        }
    }
}

#[allow(clippy::too_many_arguments)]
pub fn prepare_mesh_bind_group(
    meshes: Res<RenderAssets<Mesh>>,
    images: Res<RenderAssets<Image>>,
    mut groups: ResMut<MeshBindGroups>,
    mesh_pipeline: Res<MeshPipeline>,
    render_device: Res<RenderDevice>,
    mesh_uniforms: Res<GpuArrayBuffer<MeshUniform>>,
    skins_uniform: Res<SkinUniform>,
    weights_uniform: Res<MorphUniform>,
    render_lightmaps: Res<RenderLightmaps>,
) {
    groups.reset();
    let layouts = &mesh_pipeline.mesh_layouts;
    let Some(model) = mesh_uniforms.binding() else {
        return;
    };
    groups.model_only = Some(layouts.model_only(&render_device, &model));

    let skin = skins_uniform.buffer.buffer();
    if let Some(skin) = skin {
        groups.skinned = Some(layouts.skinned(&render_device, &model, skin));
    }

    if let Some(weights) = weights_uniform.buffer.buffer() {
        for (id, gpu_mesh) in meshes.iter() {
            if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
                let group = if let Some(skin) = skin.filter(|_| is_skinned(&gpu_mesh.layout)) {
                    layouts.morphed_skinned(&render_device, &model, skin, weights, targets)
                } else {
                    layouts.morphed(&render_device, &model, weights, targets)
                };
                groups.morph_targets.insert(id, group);
            }
        }
    }

    // Create lightmap bindgroups.
    for &image_id in &render_lightmaps.all_lightmap_images {
        if let (Entry::Vacant(entry), Some(image)) =
            (groups.lightmaps.entry(image_id), images.get(image_id))
        {
            entry.insert(layouts.lightmapped(&render_device, &model, image));
        }
    }
}

pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
    type Param = ();
    type ViewQuery = (
        Read<ViewUniformOffset>,
        Read<ViewLightsUniformOffset>,
        Read<ViewFogUniformOffset>,
        Read<ViewLightProbesUniformOffset>,
        Read<MeshViewBindGroup>,
    );
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        _item: &P,
        (view_uniform, view_lights, view_fog, view_light_probes, mesh_view_bind_group): ROQueryItem<
            'w,
            Self::ViewQuery,
        >,
        _entity: Option<()>,
        _: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        pass.set_bind_group(
            I,
            &mesh_view_bind_group.value,
            &[
                view_uniform.offset,
                view_lights.offset,
                view_fog.offset,
                **view_light_probes,
            ],
        );

        RenderCommandResult::Success
    }
}

pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
    type Param = (
        SRes<MeshBindGroups>,
        SRes<RenderMeshInstances>,
        SRes<SkinIndices>,
        SRes<MorphIndices>,
        SRes<RenderLightmaps>,
    );
    type ViewQuery = ();
    type ItemQuery = ();

    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _item_query: Option<()>,
        (bind_groups, mesh_instances, skin_indices, morph_indices, lightmaps): SystemParamItem<
            'w,
            '_,
            Self::Param,
        >,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let bind_groups = bind_groups.into_inner();
        let mesh_instances = mesh_instances.into_inner();
        let skin_indices = skin_indices.into_inner();
        let morph_indices = morph_indices.into_inner();

        let entity = &item.entity();

        let Some(mesh) = mesh_instances.get(entity) else {
            return RenderCommandResult::Success;
        };
        let skin_index = skin_indices.get(entity);
        let morph_index = morph_indices.get(entity);

        let is_skinned = skin_index.is_some();
        let is_morphed = morph_index.is_some();

        let lightmap = lightmaps
            .render_lightmaps
            .get(entity)
            .map(|render_lightmap| render_lightmap.image);

        let Some(bind_group) =
            bind_groups.get(mesh.mesh_asset_id, lightmap, is_skinned, is_morphed)
        else {
            error!(
                "The MeshBindGroups resource wasn't set in the render phase. \
                It should be set by the prepare_mesh_bind_group system.\n\
                This is a bevy bug! Please open an issue."
            );
            return RenderCommandResult::Failure;
        };

        let mut dynamic_offsets: [u32; 3] = Default::default();
        let mut offset_count = 0;
        if let Some(dynamic_offset) = item.dynamic_offset() {
            dynamic_offsets[offset_count] = dynamic_offset.get();
            offset_count += 1;
        }
        if let Some(skin_index) = skin_index {
            dynamic_offsets[offset_count] = skin_index.index;
            offset_count += 1;
        }
        if let Some(morph_index) = morph_index {
            dynamic_offsets[offset_count] = morph_index.index;
            offset_count += 1;
        }
        pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);

        RenderCommandResult::Success
    }
}

pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
    type Param = (SRes<RenderAssets<Mesh>>, SRes<RenderMeshInstances>);
    type ViewQuery = ();
    type ItemQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _item_query: Option<()>,
        (meshes, mesh_instances): SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        let meshes = meshes.into_inner();
        let mesh_instances = mesh_instances.into_inner();

        let Some(mesh_instance) = mesh_instances.get(&item.entity()) else {
            return RenderCommandResult::Failure;
        };
        let Some(gpu_mesh) = meshes.get(mesh_instance.mesh_asset_id) else {
            return RenderCommandResult::Failure;
        };

        pass.set_vertex_buffer(0, gpu_mesh.vertex_buffer.slice(..));

        let batch_range = item.batch_range();
        #[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
        pass.set_push_constants(
            ShaderStages::VERTEX,
            0,
            &(batch_range.start as i32).to_le_bytes(),
        );
        match &gpu_mesh.buffer_info {
            GpuBufferInfo::Indexed {
                buffer,
                index_format,
                count,
            } => {
                pass.set_index_buffer(buffer.slice(..), 0, *index_format);
                pass.draw_indexed(0..*count, 0, batch_range.clone());
            }
            GpuBufferInfo::NonIndexed => {
                pass.draw(0..gpu_mesh.vertex_count, batch_range.clone());
            }
        }
        RenderCommandResult::Success
    }
}

#[cfg(test)]
mod tests {
    use super::MeshPipelineKey;
    #[test]
    fn mesh_key_msaa_samples() {
        for i in [1, 2, 4, 8, 16, 32, 64, 128] {
            assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
        }
    }
}