1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
use crate::{
    directional_light_order, point_light_order, AlphaMode, AmbientLight, Cascade,
    CascadeShadowConfig, Cascades, CascadesVisibleEntities, Clusters, CubemapVisibleEntities,
    DirectionalLight, DirectionalLightShadowMap, DrawPrepass, EnvironmentMapLight,
    GlobalVisiblePointLights, Material, MaterialPipelineKey, MeshPipeline, MeshPipelineKey,
    NotShadowCaster, PointLight, PointLightShadowMap, PrepassPipeline, RenderMaterials, SpotLight,
    VisiblePointLights,
};
use bevy_asset::Handle;
use bevy_core_pipeline::core_3d::Transparent3d;
use bevy_ecs::prelude::*;
use bevy_math::{Mat4, UVec3, UVec4, Vec2, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
use bevy_render::{
    camera::Camera,
    color::Color,
    mesh::Mesh,
    render_asset::RenderAssets,
    render_graph::{Node, NodeRunError, RenderGraphContext, SlotInfo, SlotType},
    render_phase::{
        CachedRenderPipelinePhaseItem, DrawFunctionId, DrawFunctions, PhaseItem, RenderPhase,
    },
    render_resource::*,
    renderer::{RenderContext, RenderDevice, RenderQueue},
    texture::*,
    view::{ComputedVisibility, ExtractedView, VisibleEntities},
    Extract,
};
use bevy_transform::{components::GlobalTransform, prelude::Transform};
use bevy_utils::{
    tracing::{error, warn},
    HashMap,
};
use std::{
    hash::Hash,
    num::{NonZeroU32, NonZeroU64},
};

#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum RenderLightSystems {
    ExtractClusters,
    ExtractLights,
    PrepareClusters,
    PrepareLights,
    QueueShadows,
}

#[derive(Component)]
pub struct ExtractedPointLight {
    color: Color,
    /// luminous intensity in lumens per steradian
    intensity: f32,
    range: f32,
    radius: f32,
    transform: GlobalTransform,
    shadows_enabled: bool,
    shadow_depth_bias: f32,
    shadow_normal_bias: f32,
    spot_light_angles: Option<(f32, f32)>,
}

#[derive(Component, Debug)]
pub struct ExtractedDirectionalLight {
    color: Color,
    illuminance: f32,
    transform: GlobalTransform,
    shadows_enabled: bool,
    shadow_depth_bias: f32,
    shadow_normal_bias: f32,
    cascade_shadow_config: CascadeShadowConfig,
    cascades: HashMap<Entity, Vec<Cascade>>,
}

#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuPointLight {
    // For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
    // For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
    light_custom_data: Vec4,
    color_inverse_square_range: Vec4,
    position_radius: Vec4,
    flags: u32,
    shadow_depth_bias: f32,
    shadow_normal_bias: f32,
    spot_light_tan_angle: f32,
}

#[derive(ShaderType)]
pub struct GpuPointLightsUniform {
    data: Box<[GpuPointLight; MAX_UNIFORM_BUFFER_POINT_LIGHTS]>,
}

impl Default for GpuPointLightsUniform {
    fn default() -> Self {
        Self {
            data: Box::new([GpuPointLight::default(); MAX_UNIFORM_BUFFER_POINT_LIGHTS]),
        }
    }
}

#[derive(ShaderType, Default)]
pub struct GpuPointLightsStorage {
    #[size(runtime)]
    data: Vec<GpuPointLight>,
}

pub enum GpuPointLights {
    Uniform(UniformBuffer<GpuPointLightsUniform>),
    Storage(StorageBuffer<GpuPointLightsStorage>),
}

impl GpuPointLights {
    fn new(buffer_binding_type: BufferBindingType) -> Self {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => Self::storage(),
            BufferBindingType::Uniform => Self::uniform(),
        }
    }

    fn uniform() -> Self {
        Self::Uniform(UniformBuffer::default())
    }

    fn storage() -> Self {
        Self::Storage(StorageBuffer::default())
    }

    fn set(&mut self, mut lights: Vec<GpuPointLight>) {
        match self {
            GpuPointLights::Uniform(buffer) => {
                let len = lights.len().min(MAX_UNIFORM_BUFFER_POINT_LIGHTS);
                let src = &lights[..len];
                let dst = &mut buffer.get_mut().data[..len];
                dst.copy_from_slice(src);
            }
            GpuPointLights::Storage(buffer) => {
                buffer.get_mut().data.clear();
                buffer.get_mut().data.append(&mut lights);
            }
        }
    }

    fn write_buffer(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
        match self {
            GpuPointLights::Uniform(buffer) => buffer.write_buffer(render_device, render_queue),
            GpuPointLights::Storage(buffer) => buffer.write_buffer(render_device, render_queue),
        }
    }

    pub fn binding(&self) -> Option<BindingResource> {
        match self {
            GpuPointLights::Uniform(buffer) => buffer.binding(),
            GpuPointLights::Storage(buffer) => buffer.binding(),
        }
    }

    pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuPointLightsStorage::min_size(),
            BufferBindingType::Uniform => GpuPointLightsUniform::min_size(),
        }
    }
}

// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_view_types.wgsl!
bitflags::bitflags! {
    #[repr(transparent)]
    struct PointLightFlags: u32 {
        const SHADOWS_ENABLED            = (1 << 0);
        const SPOT_LIGHT_Y_NEGATIVE      = (1 << 1);
        const NONE                       = 0;
        const UNINITIALIZED              = 0xFFFF;
    }
}

#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuDirectionalCascade {
    view_projection: Mat4,
    texel_size: f32,
    far_bound: f32,
}

#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuDirectionalLight {
    cascades: [GpuDirectionalCascade; MAX_CASCADES_PER_LIGHT],
    color: Vec4,
    dir_to_light: Vec3,
    flags: u32,
    shadow_depth_bias: f32,
    shadow_normal_bias: f32,
    num_cascades: u32,
    cascades_overlap_proportion: f32,
    depth_texture_base_index: u32,
}

// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_view_types.wgsl!
bitflags::bitflags! {
    #[repr(transparent)]
    struct DirectionalLightFlags: u32 {
        const SHADOWS_ENABLED            = (1 << 0);
        const NONE                       = 0;
        const UNINITIALIZED              = 0xFFFF;
    }
}

#[derive(Copy, Clone, Debug, ShaderType)]
pub struct GpuLights {
    directional_lights: [GpuDirectionalLight; MAX_DIRECTIONAL_LIGHTS],
    ambient_color: Vec4,
    // xyz are x/y/z cluster dimensions and w is the number of clusters
    cluster_dimensions: UVec4,
    // xy are vec2<f32>(cluster_dimensions.xy) / vec2<f32>(view.width, view.height)
    // z is cluster_dimensions.z / log(far / near)
    // w is cluster_dimensions.z * log(near) / log(far / near)
    cluster_factors: Vec4,
    n_directional_lights: u32,
    // offset from spot light's light index to spot light's shadow map index
    spot_light_shadowmap_offset: i32,
    environment_map_smallest_specular_mip_level: u32,
}

// NOTE: this must be kept in sync with the same constants in pbr.frag
pub const MAX_UNIFORM_BUFFER_POINT_LIGHTS: usize = 256;
pub const MAX_DIRECTIONAL_LIGHTS: usize = 10;
#[cfg(not(feature = "webgl"))]
pub const MAX_CASCADES_PER_LIGHT: usize = 4;
#[cfg(feature = "webgl")]
pub const MAX_CASCADES_PER_LIGHT: usize = 1;
pub const SHADOW_FORMAT: TextureFormat = TextureFormat::Depth32Float;

#[derive(Resource, Clone)]
pub struct ShadowSamplers {
    pub point_light_sampler: Sampler,
    pub directional_light_sampler: Sampler,
}

// TODO: this pattern for initializing the shaders / pipeline isn't ideal. this should be handled by the asset system
impl FromWorld for ShadowSamplers {
    fn from_world(world: &mut World) -> Self {
        let render_device = world.resource::<RenderDevice>();

        ShadowSamplers {
            point_light_sampler: render_device.create_sampler(&SamplerDescriptor {
                address_mode_u: AddressMode::ClampToEdge,
                address_mode_v: AddressMode::ClampToEdge,
                address_mode_w: AddressMode::ClampToEdge,
                mag_filter: FilterMode::Linear,
                min_filter: FilterMode::Linear,
                mipmap_filter: FilterMode::Nearest,
                compare: Some(CompareFunction::GreaterEqual),
                ..Default::default()
            }),
            directional_light_sampler: render_device.create_sampler(&SamplerDescriptor {
                address_mode_u: AddressMode::ClampToEdge,
                address_mode_v: AddressMode::ClampToEdge,
                address_mode_w: AddressMode::ClampToEdge,
                mag_filter: FilterMode::Linear,
                min_filter: FilterMode::Linear,
                mipmap_filter: FilterMode::Nearest,
                compare: Some(CompareFunction::GreaterEqual),
                ..Default::default()
            }),
        }
    }
}

#[derive(Component)]
pub struct ExtractedClusterConfig {
    /// Special near value for cluster calculations
    near: f32,
    far: f32,
    /// Number of clusters in `X` / `Y` / `Z` in the view frustum
    dimensions: UVec3,
}

#[derive(Component)]
pub struct ExtractedClustersPointLights {
    data: Vec<VisiblePointLights>,
}

pub fn extract_clusters(
    mut commands: Commands,
    views: Extract<Query<(Entity, &Clusters), With<Camera>>>,
) {
    for (entity, clusters) in &views {
        commands.get_or_spawn(entity).insert((
            ExtractedClustersPointLights {
                data: clusters.lights.clone(),
            },
            ExtractedClusterConfig {
                near: clusters.near,
                far: clusters.far,
                dimensions: clusters.dimensions,
            },
        ));
    }
}

#[allow(clippy::too_many_arguments)]
pub fn extract_lights(
    mut commands: Commands,
    point_light_shadow_map: Extract<Res<PointLightShadowMap>>,
    directional_light_shadow_map: Extract<Res<DirectionalLightShadowMap>>,
    global_point_lights: Extract<Res<GlobalVisiblePointLights>>,
    point_lights: Extract<
        Query<(
            &PointLight,
            &CubemapVisibleEntities,
            &GlobalTransform,
            &ComputedVisibility,
        )>,
    >,
    spot_lights: Extract<
        Query<(
            &SpotLight,
            &VisibleEntities,
            &GlobalTransform,
            &ComputedVisibility,
        )>,
    >,
    directional_lights: Extract<
        Query<
            (
                Entity,
                &DirectionalLight,
                &CascadesVisibleEntities,
                &Cascades,
                &CascadeShadowConfig,
                &GlobalTransform,
                &ComputedVisibility,
            ),
            Without<SpotLight>,
        >,
    >,
    mut previous_point_lights_len: Local<usize>,
    mut previous_spot_lights_len: Local<usize>,
) {
    // NOTE: These shadow map resources are extracted here as they are used here too so this avoids
    // races between scheduling of ExtractResourceSystems and this system.
    if point_light_shadow_map.is_changed() {
        commands.insert_resource(point_light_shadow_map.clone());
    }
    if directional_light_shadow_map.is_changed() {
        commands.insert_resource(directional_light_shadow_map.clone());
    }
    // This is the point light shadow map texel size for one face of the cube as a distance of 1.0
    // world unit from the light.
    // point_light_texel_size = 2.0 * 1.0 * tan(PI / 4.0) / cube face width in texels
    // PI / 4.0 is half the cube face fov, tan(PI / 4.0) = 1.0, so this simplifies to:
    // point_light_texel_size = 2.0 / cube face width in texels
    // NOTE: When using various PCF kernel sizes, this will need to be adjusted, according to:
    // https://catlikecoding.com/unity/tutorials/custom-srp/point-and-spot-shadows/
    let point_light_texel_size = 2.0 / point_light_shadow_map.size as f32;

    let mut point_lights_values = Vec::with_capacity(*previous_point_lights_len);
    for entity in global_point_lights.iter().copied() {
        if let Ok((point_light, cubemap_visible_entities, transform, visibility)) =
            point_lights.get(entity)
        {
            if !visibility.is_visible() {
                continue;
            }
            // TODO: This is very much not ideal. We should be able to re-use the vector memory.
            // However, since exclusive access to the main world in extract is ill-advised, we just clone here.
            let render_cubemap_visible_entities = cubemap_visible_entities.clone();
            point_lights_values.push((
                entity,
                (
                    ExtractedPointLight {
                        color: point_light.color,
                        // NOTE: Map from luminous power in lumens to luminous intensity in lumens per steradian
                        // for a point light. See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
                        // for details.
                        intensity: point_light.intensity / (4.0 * std::f32::consts::PI),
                        range: point_light.range,
                        radius: point_light.radius,
                        transform: *transform,
                        shadows_enabled: point_light.shadows_enabled,
                        shadow_depth_bias: point_light.shadow_depth_bias,
                        // The factor of SQRT_2 is for the worst-case diagonal offset
                        shadow_normal_bias: point_light.shadow_normal_bias
                            * point_light_texel_size
                            * std::f32::consts::SQRT_2,
                        spot_light_angles: None,
                    },
                    render_cubemap_visible_entities,
                ),
            ));
        }
    }
    *previous_point_lights_len = point_lights_values.len();
    commands.insert_or_spawn_batch(point_lights_values);

    let mut spot_lights_values = Vec::with_capacity(*previous_spot_lights_len);
    for entity in global_point_lights.iter().copied() {
        if let Ok((spot_light, visible_entities, transform, visibility)) = spot_lights.get(entity) {
            if !visibility.is_visible() {
                continue;
            }
            // TODO: This is very much not ideal. We should be able to re-use the vector memory.
            // However, since exclusive access to the main world in extract is ill-advised, we just clone here.
            let render_visible_entities = visible_entities.clone();
            let texel_size =
                2.0 * spot_light.outer_angle.tan() / directional_light_shadow_map.size as f32;

            spot_lights_values.push((
                entity,
                (
                    ExtractedPointLight {
                        color: spot_light.color,
                        // NOTE: Map from luminous power in lumens to luminous intensity in lumens per steradian
                        // for a point light. See https://google.github.io/filament/Filament.html#mjx-eqn-pointLightLuminousPower
                        // for details.
                        // Note: Filament uses a divisor of PI for spot lights. We choose to use the same 4*PI divisor
                        // in both cases so that toggling between point light and spot light keeps lit areas lit equally,
                        // which seems least surprising for users
                        intensity: spot_light.intensity / (4.0 * std::f32::consts::PI),
                        range: spot_light.range,
                        radius: spot_light.radius,
                        transform: *transform,
                        shadows_enabled: spot_light.shadows_enabled,
                        shadow_depth_bias: spot_light.shadow_depth_bias,
                        // The factor of SQRT_2 is for the worst-case diagonal offset
                        shadow_normal_bias: spot_light.shadow_normal_bias
                            * texel_size
                            * std::f32::consts::SQRT_2,
                        spot_light_angles: Some((spot_light.inner_angle, spot_light.outer_angle)),
                    },
                    render_visible_entities,
                ),
            ));
        }
    }
    *previous_spot_lights_len = spot_lights_values.len();
    commands.insert_or_spawn_batch(spot_lights_values);

    for (
        entity,
        directional_light,
        visible_entities,
        cascades,
        cascade_config,
        transform,
        visibility,
    ) in directional_lights.iter()
    {
        if !visibility.is_visible() {
            continue;
        }

        // TODO: As above
        let render_visible_entities = visible_entities.clone();
        commands.get_or_spawn(entity).insert((
            ExtractedDirectionalLight {
                color: directional_light.color,
                illuminance: directional_light.illuminance,
                transform: *transform,
                shadows_enabled: directional_light.shadows_enabled,
                shadow_depth_bias: directional_light.shadow_depth_bias,
                // The factor of SQRT_2 is for the worst-case diagonal offset
                shadow_normal_bias: directional_light.shadow_normal_bias * std::f32::consts::SQRT_2,
                cascade_shadow_config: cascade_config.clone(),
                cascades: cascades.cascades.clone(),
            },
            render_visible_entities,
        ));
    }
}

pub(crate) const POINT_LIGHT_NEAR_Z: f32 = 0.1f32;

pub(crate) struct CubeMapFace {
    pub(crate) target: Vec3,
    pub(crate) up: Vec3,
}

// see https://www.khronos.org/opengl/wiki/Cubemap_Texture
pub(crate) const CUBE_MAP_FACES: [CubeMapFace; 6] = [
    // 0 	GL_TEXTURE_CUBE_MAP_POSITIVE_X
    CubeMapFace {
        target: Vec3::NEG_X,
        up: Vec3::NEG_Y,
    },
    // 1 	GL_TEXTURE_CUBE_MAP_NEGATIVE_X
    CubeMapFace {
        target: Vec3::X,
        up: Vec3::NEG_Y,
    },
    // 2 	GL_TEXTURE_CUBE_MAP_POSITIVE_Y
    CubeMapFace {
        target: Vec3::NEG_Y,
        up: Vec3::Z,
    },
    // 3 	GL_TEXTURE_CUBE_MAP_NEGATIVE_Y
    CubeMapFace {
        target: Vec3::Y,
        up: Vec3::NEG_Z,
    },
    // 4 	GL_TEXTURE_CUBE_MAP_POSITIVE_Z
    CubeMapFace {
        target: Vec3::NEG_Z,
        up: Vec3::NEG_Y,
    },
    // 5 	GL_TEXTURE_CUBE_MAP_NEGATIVE_Z
    CubeMapFace {
        target: Vec3::Z,
        up: Vec3::NEG_Y,
    },
];

fn face_index_to_name(face_index: usize) -> &'static str {
    match face_index {
        0 => "+x",
        1 => "-x",
        2 => "+y",
        3 => "-y",
        4 => "+z",
        5 => "-z",
        _ => "invalid",
    }
}

#[derive(Component)]
pub struct ShadowView {
    pub depth_texture_view: TextureView,
    pub pass_name: String,
}

#[derive(Component)]
pub struct ViewShadowBindings {
    pub point_light_depth_texture: Texture,
    pub point_light_depth_texture_view: TextureView,
    pub directional_light_depth_texture: Texture,
    pub directional_light_depth_texture_view: TextureView,
}

#[derive(Component)]
pub struct ViewLightEntities {
    pub lights: Vec<Entity>,
}

#[derive(Component)]
pub struct ViewLightsUniformOffset {
    pub offset: u32,
}

// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
// at least that many are supported using this constant and SupportedBindingType::from_device()
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;

#[derive(Resource)]
pub struct GlobalLightMeta {
    pub gpu_point_lights: GpuPointLights,
    pub entity_to_index: HashMap<Entity, usize>,
}

impl FromWorld for GlobalLightMeta {
    fn from_world(world: &mut World) -> Self {
        Self::new(
            world
                .resource::<RenderDevice>()
                .get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
        )
    }
}

impl GlobalLightMeta {
    pub fn new(buffer_binding_type: BufferBindingType) -> Self {
        Self {
            gpu_point_lights: GpuPointLights::new(buffer_binding_type),
            entity_to_index: HashMap::default(),
        }
    }
}

#[derive(Resource, Default)]
pub struct LightMeta {
    pub view_gpu_lights: DynamicUniformBuffer<GpuLights>,
}

#[derive(Component)]
pub enum LightEntity {
    Directional {
        light_entity: Entity,
        cascade_index: usize,
    },
    Point {
        light_entity: Entity,
        face_index: usize,
    },
    Spot {
        light_entity: Entity,
    },
}
pub fn calculate_cluster_factors(
    near: f32,
    far: f32,
    z_slices: f32,
    is_orthographic: bool,
) -> Vec2 {
    if is_orthographic {
        Vec2::new(-near, z_slices / (-far - -near))
    } else {
        let z_slices_of_ln_zfar_over_znear = (z_slices - 1.0) / (far / near).ln();
        Vec2::new(
            z_slices_of_ln_zfar_over_znear,
            near.ln() * z_slices_of_ln_zfar_over_znear,
        )
    }
}

// this method of constructing a basis from a vec3 is used by glam::Vec3::any_orthonormal_pair
// we will also construct it in the fragment shader and need our implementations to match,
// so we reproduce it here to avoid a mismatch if glam changes. we also switch the handedness
// could move this onto transform but it's pretty niche
pub(crate) fn spot_light_view_matrix(transform: &GlobalTransform) -> Mat4 {
    // the matrix z_local (opposite of transform.forward())
    let fwd_dir = transform.back().extend(0.0);

    let sign = 1f32.copysign(fwd_dir.z);
    let a = -1.0 / (fwd_dir.z + sign);
    let b = fwd_dir.x * fwd_dir.y * a;
    let up_dir = Vec4::new(
        1.0 + sign * fwd_dir.x * fwd_dir.x * a,
        sign * b,
        -sign * fwd_dir.x,
        0.0,
    );
    let right_dir = Vec4::new(-b, -sign - fwd_dir.y * fwd_dir.y * a, fwd_dir.y, 0.0);

    Mat4::from_cols(
        right_dir,
        up_dir,
        fwd_dir,
        transform.translation().extend(1.0),
    )
}

pub(crate) fn spot_light_projection_matrix(angle: f32) -> Mat4 {
    // spot light projection FOV is 2x the angle from spot light centre to outer edge
    Mat4::perspective_infinite_reverse_rh(angle * 2.0, 1.0, POINT_LIGHT_NEAR_Z)
}

#[allow(clippy::too_many_arguments)]
pub fn prepare_lights(
    mut commands: Commands,
    mut texture_cache: ResMut<TextureCache>,
    images: Res<RenderAssets<Image>>,
    render_device: Res<RenderDevice>,
    render_queue: Res<RenderQueue>,
    mut global_light_meta: ResMut<GlobalLightMeta>,
    mut light_meta: ResMut<LightMeta>,
    views: Query<
        (
            Entity,
            &ExtractedView,
            &ExtractedClusterConfig,
            Option<&EnvironmentMapLight>,
        ),
        With<RenderPhase<Transparent3d>>,
    >,
    ambient_light: Res<AmbientLight>,
    point_light_shadow_map: Res<PointLightShadowMap>,
    directional_light_shadow_map: Res<DirectionalLightShadowMap>,
    mut max_directional_lights_warning_emitted: Local<bool>,
    mut max_cascades_per_light_warning_emitted: Local<bool>,
    point_lights: Query<(Entity, &ExtractedPointLight)>,
    directional_lights: Query<(Entity, &ExtractedDirectionalLight)>,
) {
    light_meta.view_gpu_lights.clear();

    // Pre-calculate for PointLights
    let cube_face_projection =
        Mat4::perspective_infinite_reverse_rh(std::f32::consts::FRAC_PI_2, 1.0, POINT_LIGHT_NEAR_Z);
    let cube_face_rotations = CUBE_MAP_FACES
        .iter()
        .map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
        .collect::<Vec<_>>();

    global_light_meta.entity_to_index.clear();

    let mut point_lights: Vec<_> = point_lights.iter().collect::<Vec<_>>();
    let mut directional_lights: Vec<_> = directional_lights.iter().collect::<Vec<_>>();

    #[cfg(not(feature = "webgl"))]
    let max_texture_array_layers = render_device.limits().max_texture_array_layers as usize;
    #[cfg(not(feature = "webgl"))]
    let max_texture_cubes = max_texture_array_layers / 6;
    #[cfg(feature = "webgl")]
    let max_texture_array_layers = 1;
    #[cfg(feature = "webgl")]
    let max_texture_cubes = 1;

    if !*max_directional_lights_warning_emitted && directional_lights.len() > MAX_DIRECTIONAL_LIGHTS
    {
        warn!(
            "The amount of directional lights of {} is exceeding the supported limit of {}.",
            directional_lights.len(),
            MAX_DIRECTIONAL_LIGHTS
        );
        *max_directional_lights_warning_emitted = true;
    }

    if !*max_cascades_per_light_warning_emitted
        && directional_lights
            .iter()
            .any(|(_, light)| light.cascade_shadow_config.bounds.len() > MAX_CASCADES_PER_LIGHT)
    {
        warn!(
            "The number of cascades configured for a directional light exceeds the supported limit of {}.",
            MAX_CASCADES_PER_LIGHT
        );
        *max_cascades_per_light_warning_emitted = true;
    }

    let point_light_count = point_lights
        .iter()
        .filter(|light| light.1.spot_light_angles.is_none())
        .count();

    let point_light_shadow_maps_count = point_lights
        .iter()
        .filter(|light| light.1.shadows_enabled && light.1.spot_light_angles.is_none())
        .count()
        .min(max_texture_cubes);

    let directional_shadow_enabled_count = directional_lights
        .iter()
        .take(MAX_DIRECTIONAL_LIGHTS)
        .filter(|(_, light)| light.shadows_enabled)
        .count()
        .min(max_texture_array_layers / MAX_CASCADES_PER_LIGHT);

    let spot_light_shadow_maps_count = point_lights
        .iter()
        .filter(|(_, light)| light.shadows_enabled && light.spot_light_angles.is_some())
        .count()
        .min(max_texture_array_layers - directional_shadow_enabled_count * MAX_CASCADES_PER_LIGHT);

    // Sort lights by
    // - point-light vs spot-light, so that we can iterate point lights and spot lights in contiguous blocks in the fragment shader,
    // - then those with shadows enabled first, so that the index can be used to render at most `point_light_shadow_maps_count`
    //   point light shadows and `spot_light_shadow_maps_count` spot light shadow maps,
    // - then by entity as a stable key to ensure that a consistent set of lights are chosen if the light count limit is exceeded.
    point_lights.sort_by(|(entity_1, light_1), (entity_2, light_2)| {
        point_light_order(
            (
                entity_1,
                &light_1.shadows_enabled,
                &light_1.spot_light_angles.is_some(),
            ),
            (
                entity_2,
                &light_2.shadows_enabled,
                &light_2.spot_light_angles.is_some(),
            ),
        )
    });

    // Sort lights by
    // - those with shadows enabled first, so that the index can be used to render at most `directional_light_shadow_maps_count`
    //   directional light shadows
    // - then by entity as a stable key to ensure that a consistent set of lights are chosen if the light count limit is exceeded.
    directional_lights.sort_by(|(entity_1, light_1), (entity_2, light_2)| {
        directional_light_order(
            (entity_1, &light_1.shadows_enabled),
            (entity_2, &light_2.shadows_enabled),
        )
    });

    if global_light_meta.entity_to_index.capacity() < point_lights.len() {
        global_light_meta
            .entity_to_index
            .reserve(point_lights.len());
    }

    let mut gpu_point_lights = Vec::new();
    for (index, &(entity, light)) in point_lights.iter().enumerate() {
        let mut flags = PointLightFlags::NONE;

        // Lights are sorted, shadow enabled lights are first
        if light.shadows_enabled
            && (index < point_light_shadow_maps_count
                || (light.spot_light_angles.is_some()
                    && index - point_light_count < spot_light_shadow_maps_count))
        {
            flags |= PointLightFlags::SHADOWS_ENABLED;
        }

        let (light_custom_data, spot_light_tan_angle) = match light.spot_light_angles {
            Some((inner, outer)) => {
                let light_direction = light.transform.forward();
                if light_direction.y.is_sign_negative() {
                    flags |= PointLightFlags::SPOT_LIGHT_Y_NEGATIVE;
                }

                let cos_outer = outer.cos();
                let spot_scale = 1.0 / f32::max(inner.cos() - cos_outer, 1e-4);
                let spot_offset = -cos_outer * spot_scale;

                (
                    // For spot lights: the direction (x,z), spot_scale and spot_offset
                    light_direction.xz().extend(spot_scale).extend(spot_offset),
                    outer.tan(),
                )
            }
            None => {
                (
                    // For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
                    Vec4::new(
                        cube_face_projection.z_axis.z,
                        cube_face_projection.z_axis.w,
                        cube_face_projection.w_axis.z,
                        cube_face_projection.w_axis.w,
                    ),
                    // unused
                    0.0,
                )
            }
        };

        gpu_point_lights.push(GpuPointLight {
            light_custom_data,
            // premultiply color by intensity
            // we don't use the alpha at all, so no reason to multiply only [0..3]
            color_inverse_square_range: (Vec4::from_slice(&light.color.as_linear_rgba_f32())
                * light.intensity)
                .xyz()
                .extend(1.0 / (light.range * light.range)),
            position_radius: light.transform.translation().extend(light.radius),
            flags: flags.bits,
            shadow_depth_bias: light.shadow_depth_bias,
            shadow_normal_bias: light.shadow_normal_bias,
            spot_light_tan_angle,
        });
        global_light_meta.entity_to_index.insert(entity, index);
    }

    let mut gpu_directional_lights = [GpuDirectionalLight::default(); MAX_DIRECTIONAL_LIGHTS];
    let mut num_directional_cascades_enabled = 0usize;
    for (index, (_light_entity, light)) in directional_lights
        .iter()
        .enumerate()
        .take(MAX_DIRECTIONAL_LIGHTS)
    {
        let mut flags = DirectionalLightFlags::NONE;

        // Lights are sorted, shadow enabled lights are first
        if light.shadows_enabled && (index < directional_shadow_enabled_count) {
            flags |= DirectionalLightFlags::SHADOWS_ENABLED;
        }

        // convert from illuminance (lux) to candelas
        //
        // exposure is hard coded at the moment but should be replaced
        // by values coming from the camera
        // see: https://google.github.io/filament/Filament.html#imagingpipeline/physicallybasedcamera/exposuresettings
        const APERTURE: f32 = 4.0;
        const SHUTTER_SPEED: f32 = 1.0 / 250.0;
        const SENSITIVITY: f32 = 100.0;
        let ev100 = f32::log2(APERTURE * APERTURE / SHUTTER_SPEED) - f32::log2(SENSITIVITY / 100.0);
        let exposure = 1.0 / (f32::powf(2.0, ev100) * 1.2);
        let intensity = light.illuminance * exposure;

        let num_cascades = light
            .cascade_shadow_config
            .bounds
            .len()
            .min(MAX_CASCADES_PER_LIGHT);
        gpu_directional_lights[index] = GpuDirectionalLight {
            // Filled in later.
            cascades: [GpuDirectionalCascade::default(); MAX_CASCADES_PER_LIGHT],
            // premultiply color by intensity
            // we don't use the alpha at all, so no reason to multiply only [0..3]
            color: Vec4::from_slice(&light.color.as_linear_rgba_f32()) * intensity,
            // direction is negated to be ready for N.L
            dir_to_light: light.transform.back(),
            flags: flags.bits,
            shadow_depth_bias: light.shadow_depth_bias,
            shadow_normal_bias: light.shadow_normal_bias,
            num_cascades: num_cascades as u32,
            cascades_overlap_proportion: light.cascade_shadow_config.overlap_proportion,
            depth_texture_base_index: num_directional_cascades_enabled as u32,
        };
        if index < directional_shadow_enabled_count {
            num_directional_cascades_enabled += num_cascades;
        }
    }

    global_light_meta.gpu_point_lights.set(gpu_point_lights);
    global_light_meta
        .gpu_point_lights
        .write_buffer(&render_device, &render_queue);

    // set up light data for each view
    for (entity, extracted_view, clusters, environment_map) in &views {
        let point_light_depth_texture = texture_cache.get(
            &render_device,
            TextureDescriptor {
                size: Extent3d {
                    width: point_light_shadow_map.size as u32,
                    height: point_light_shadow_map.size as u32,
                    depth_or_array_layers: point_light_shadow_maps_count.max(1) as u32 * 6,
                },
                mip_level_count: 1,
                sample_count: 1,
                dimension: TextureDimension::D2,
                format: SHADOW_FORMAT,
                label: Some("point_light_shadow_map_texture"),
                usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
                view_formats: &[],
            },
        );
        let directional_light_depth_texture = texture_cache.get(
            &render_device,
            TextureDescriptor {
                size: Extent3d {
                    width: (directional_light_shadow_map.size as u32)
                        .min(render_device.limits().max_texture_dimension_2d),
                    height: (directional_light_shadow_map.size as u32)
                        .min(render_device.limits().max_texture_dimension_2d),
                    depth_or_array_layers: (num_directional_cascades_enabled
                        + spot_light_shadow_maps_count)
                        .max(1) as u32,
                },
                mip_level_count: 1,
                sample_count: 1,
                dimension: TextureDimension::D2,
                format: SHADOW_FORMAT,
                label: Some("directional_light_shadow_map_texture"),
                usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
                view_formats: &[],
            },
        );
        let mut view_lights = Vec::new();

        let is_orthographic = extracted_view.projection.w_axis.w == 1.0;
        let cluster_factors_zw = calculate_cluster_factors(
            clusters.near,
            clusters.far,
            clusters.dimensions.z as f32,
            is_orthographic,
        );

        let n_clusters = clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z;
        let mut gpu_lights = GpuLights {
            directional_lights: gpu_directional_lights,
            ambient_color: Vec4::from_slice(&ambient_light.color.as_linear_rgba_f32())
                * ambient_light.brightness,
            cluster_factors: Vec4::new(
                clusters.dimensions.x as f32 / extracted_view.viewport.z as f32,
                clusters.dimensions.y as f32 / extracted_view.viewport.w as f32,
                cluster_factors_zw.x,
                cluster_factors_zw.y,
            ),
            cluster_dimensions: clusters.dimensions.extend(n_clusters),
            n_directional_lights: directional_lights.iter().len() as u32,
            // spotlight shadow maps are stored in the directional light array, starting at num_directional_cascades_enabled.
            // the spot lights themselves start in the light array at point_light_count. so to go from light
            // index to shadow map index, we need to subtract point light count and add directional shadowmap count.
            spot_light_shadowmap_offset: num_directional_cascades_enabled as i32
                - point_light_count as i32,
            environment_map_smallest_specular_mip_level: environment_map
                .and_then(|env_map| images.get(&env_map.specular_map))
                .map(|specular_map| specular_map.mip_level_count - 1)
                .unwrap_or(0),
        };

        // TODO: this should select lights based on relevance to the view instead of the first ones that show up in a query
        for &(light_entity, light) in point_lights
            .iter()
            // Lights are sorted, shadow enabled lights are first
            .take(point_light_shadow_maps_count)
            .filter(|(_, light)| light.shadows_enabled)
        {
            let light_index = *global_light_meta
                .entity_to_index
                .get(&light_entity)
                .unwrap();
            // ignore scale because we don't want to effectively scale light radius and range
            // by applying those as a view transform to shadow map rendering of objects
            // and ignore rotation because we want the shadow map projections to align with the axes
            let view_translation = GlobalTransform::from_translation(light.transform.translation());

            for (face_index, view_rotation) in cube_face_rotations.iter().enumerate() {
                let depth_texture_view =
                    point_light_depth_texture
                        .texture
                        .create_view(&TextureViewDescriptor {
                            label: Some("point_light_shadow_map_texture_view"),
                            format: None,
                            dimension: Some(TextureViewDimension::D2),
                            aspect: TextureAspect::All,
                            base_mip_level: 0,
                            mip_level_count: None,
                            base_array_layer: (light_index * 6 + face_index) as u32,
                            array_layer_count: NonZeroU32::new(1),
                        });

                let view_light_entity = commands
                    .spawn((
                        ShadowView {
                            depth_texture_view,
                            pass_name: format!(
                                "shadow pass point light {} {}",
                                light_index,
                                face_index_to_name(face_index)
                            ),
                        },
                        ExtractedView {
                            viewport: UVec4::new(
                                0,
                                0,
                                point_light_shadow_map.size as u32,
                                point_light_shadow_map.size as u32,
                            ),
                            transform: view_translation * *view_rotation,
                            view_projection: None,
                            projection: cube_face_projection,
                            hdr: false,
                            color_grading: Default::default(),
                        },
                        RenderPhase::<Shadow>::default(),
                        LightEntity::Point {
                            light_entity,
                            face_index,
                        },
                    ))
                    .id();
                view_lights.push(view_light_entity);
            }
        }

        // spot lights
        for (light_index, &(light_entity, light)) in point_lights
            .iter()
            .skip(point_light_count)
            .take(spot_light_shadow_maps_count)
            .enumerate()
        {
            let spot_view_matrix = spot_light_view_matrix(&light.transform);
            let spot_view_transform = spot_view_matrix.into();

            let angle = light.spot_light_angles.expect("lights should be sorted so that \
                [point_light_count..point_light_count + spot_light_shadow_maps_count] are spot lights").1;
            let spot_projection = spot_light_projection_matrix(angle);

            let depth_texture_view =
                directional_light_depth_texture
                    .texture
                    .create_view(&TextureViewDescriptor {
                        label: Some("spot_light_shadow_map_texture_view"),
                        format: None,
                        dimension: Some(TextureViewDimension::D2),
                        aspect: TextureAspect::All,
                        base_mip_level: 0,
                        mip_level_count: None,
                        base_array_layer: (num_directional_cascades_enabled + light_index) as u32,
                        array_layer_count: NonZeroU32::new(1),
                    });

            let view_light_entity = commands
                .spawn((
                    ShadowView {
                        depth_texture_view,
                        pass_name: format!("shadow pass spot light {light_index}",),
                    },
                    ExtractedView {
                        viewport: UVec4::new(
                            0,
                            0,
                            directional_light_shadow_map.size as u32,
                            directional_light_shadow_map.size as u32,
                        ),
                        transform: spot_view_transform,
                        projection: spot_projection,
                        view_projection: None,
                        hdr: false,
                        color_grading: Default::default(),
                    },
                    RenderPhase::<Shadow>::default(),
                    LightEntity::Spot { light_entity },
                ))
                .id();

            view_lights.push(view_light_entity);
        }

        // directional lights
        let mut directional_depth_texture_array_index = 0u32;
        for (light_index, &(light_entity, light)) in directional_lights
            .iter()
            .enumerate()
            .take(directional_shadow_enabled_count)
        {
            for (cascade_index, (cascade, bound)) in light
                .cascades
                .get(&entity)
                .unwrap()
                .iter()
                .take(MAX_CASCADES_PER_LIGHT)
                .zip(&light.cascade_shadow_config.bounds)
                .enumerate()
            {
                gpu_lights.directional_lights[light_index].cascades[cascade_index] =
                    GpuDirectionalCascade {
                        view_projection: cascade.view_projection,
                        texel_size: cascade.texel_size,
                        far_bound: *bound,
                    };

                let depth_texture_view =
                    directional_light_depth_texture
                        .texture
                        .create_view(&TextureViewDescriptor {
                            label: Some("directional_light_shadow_map_array_texture_view"),
                            format: None,
                            dimension: Some(TextureViewDimension::D2),
                            aspect: TextureAspect::All,
                            base_mip_level: 0,
                            mip_level_count: None,
                            base_array_layer: directional_depth_texture_array_index,
                            array_layer_count: NonZeroU32::new(1),
                        });
                directional_depth_texture_array_index += 1;

                let view_light_entity = commands
                    .spawn((
                        ShadowView {
                            depth_texture_view,
                            pass_name: format!(
                                "shadow pass directional light {light_index} cascade {cascade_index}"),
                        },
                        ExtractedView {
                            viewport: UVec4::new(
                                0,
                                0,
                                directional_light_shadow_map.size as u32,
                                directional_light_shadow_map.size as u32,
                            ),
                            transform: GlobalTransform::from(cascade.view_transform),
                            projection: cascade.projection,
                            view_projection: Some(cascade.view_projection),
                            hdr: false,
                            color_grading: Default::default(),
                        },
                        RenderPhase::<Shadow>::default(),
                        LightEntity::Directional {
                            light_entity,
                            cascade_index,
                        },
                    ))
                    .id();
                view_lights.push(view_light_entity);
            }
        }

        let point_light_depth_texture_view =
            point_light_depth_texture
                .texture
                .create_view(&TextureViewDescriptor {
                    label: Some("point_light_shadow_map_array_texture_view"),
                    format: None,
                    #[cfg(not(feature = "webgl"))]
                    dimension: Some(TextureViewDimension::CubeArray),
                    #[cfg(feature = "webgl")]
                    dimension: Some(TextureViewDimension::Cube),
                    aspect: TextureAspect::All,
                    base_mip_level: 0,
                    mip_level_count: None,
                    base_array_layer: 0,
                    array_layer_count: None,
                });
        let directional_light_depth_texture_view = directional_light_depth_texture
            .texture
            .create_view(&TextureViewDescriptor {
                label: Some("directional_light_shadow_map_array_texture_view"),
                format: None,
                #[cfg(not(feature = "webgl"))]
                dimension: Some(TextureViewDimension::D2Array),
                #[cfg(feature = "webgl")]
                dimension: Some(TextureViewDimension::D2),
                aspect: TextureAspect::All,
                base_mip_level: 0,
                mip_level_count: None,
                base_array_layer: 0,
                array_layer_count: None,
            });

        commands.entity(entity).insert((
            ViewShadowBindings {
                point_light_depth_texture: point_light_depth_texture.texture,
                point_light_depth_texture_view,
                directional_light_depth_texture: directional_light_depth_texture.texture,
                directional_light_depth_texture_view,
            },
            ViewLightEntities {
                lights: view_lights,
            },
            ViewLightsUniformOffset {
                offset: light_meta.view_gpu_lights.push(gpu_lights),
            },
        ));
    }

    light_meta
        .view_gpu_lights
        .write_buffer(&render_device, &render_queue);
}

// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
// and must be large enough to contain MAX_UNIFORM_BUFFER_POINT_LIGHTS
const CLUSTER_COUNT_SIZE: u32 = 9;

const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;

// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit 256 point lights in one uniform
// buffer, which means the count can be at most 256 so it
// needs 9 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. log2(16384) = 14 bits.
// We use 32 bits to store the offset and counts so
// we pack the offset into the upper 14 bits of a u32,
// the point light count into bits 9-17, and the spot light count into bits 0-8.
//  [ 31     ..     18 | 17      ..      9 | 8       ..     0 ]
//  [      offset      | point light count | spot light count ]
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
fn pack_offset_and_counts(offset: usize, point_count: usize, spot_count: usize) -> u32 {
    ((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
        | (point_count as u32 & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE
        | (spot_count as u32 & CLUSTER_COUNT_MASK)
}

#[derive(ShaderType)]
struct GpuClusterLightIndexListsUniform {
    data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}

// NOTE: Assert at compile time that GpuClusterLightIndexListsUniform
// fits within the maximum uniform buffer binding size
const _: () = assert!(GpuClusterLightIndexListsUniform::SHADER_SIZE.get() <= 16384);

impl Default for GpuClusterLightIndexListsUniform {
    fn default() -> Self {
        Self {
            data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
        }
    }
}

#[derive(ShaderType)]
struct GpuClusterOffsetsAndCountsUniform {
    data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}

impl Default for GpuClusterOffsetsAndCountsUniform {
    fn default() -> Self {
        Self {
            data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
        }
    }
}

#[derive(ShaderType, Default)]
struct GpuClusterLightIndexListsStorage {
    #[size(runtime)]
    data: Vec<u32>,
}

#[derive(ShaderType, Default)]
struct GpuClusterOffsetsAndCountsStorage {
    #[size(runtime)]
    data: Vec<UVec4>,
}

enum ViewClusterBuffers {
    Uniform {
        // NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
        cluster_light_index_lists: UniformBuffer<GpuClusterLightIndexListsUniform>,
        // NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
        cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
    },
    Storage {
        cluster_light_index_lists: StorageBuffer<GpuClusterLightIndexListsStorage>,
        cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
    },
}

impl ViewClusterBuffers {
    fn new(buffer_binding_type: BufferBindingType) -> Self {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => Self::storage(),
            BufferBindingType::Uniform => Self::uniform(),
        }
    }

    fn uniform() -> Self {
        ViewClusterBuffers::Uniform {
            cluster_light_index_lists: UniformBuffer::default(),
            cluster_offsets_and_counts: UniformBuffer::default(),
        }
    }

    fn storage() -> Self {
        ViewClusterBuffers::Storage {
            cluster_light_index_lists: StorageBuffer::default(),
            cluster_offsets_and_counts: StorageBuffer::default(),
        }
    }
}

#[derive(Component)]
pub struct ViewClusterBindings {
    n_indices: usize,
    n_offsets: usize,
    buffers: ViewClusterBuffers,
}

impl ViewClusterBindings {
    pub const MAX_OFFSETS: usize = 16384 / 4;
    const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
    pub const MAX_INDICES: usize = 16384;

    pub fn new(buffer_binding_type: BufferBindingType) -> Self {
        Self {
            n_indices: 0,
            n_offsets: 0,
            buffers: ViewClusterBuffers::new(buffer_binding_type),
        }
    }

    pub fn clear(&mut self) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_light_index_lists,
                cluster_offsets_and_counts,
            } => {
                *cluster_light_index_lists.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
                *cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
            }
            ViewClusterBuffers::Storage {
                cluster_light_index_lists,
                cluster_offsets_and_counts,
                ..
            } => {
                cluster_light_index_lists.get_mut().data.clear();
                cluster_offsets_and_counts.get_mut().data.clear();
            }
        }
    }

    pub fn push_offset_and_counts(&mut self, offset: usize, point_count: usize, spot_count: usize) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_offsets_and_counts,
                ..
            } => {
                let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
                if array_index >= Self::MAX_UNIFORM_ITEMS {
                    warn!("cluster offset and count out of bounds!");
                    return;
                }
                let component = self.n_offsets & ((1 << 2) - 1);
                let packed = pack_offset_and_counts(offset, point_count, spot_count);

                cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
            }
            ViewClusterBuffers::Storage {
                cluster_offsets_and_counts,
                ..
            } => {
                cluster_offsets_and_counts.get_mut().data.push(UVec4::new(
                    offset as u32,
                    point_count as u32,
                    spot_count as u32,
                    0,
                ));
            }
        }

        self.n_offsets += 1;
    }

    pub fn n_indices(&self) -> usize {
        self.n_indices
    }

    pub fn push_index(&mut self, index: usize) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_light_index_lists,
                ..
            } => {
                let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
                let component = (self.n_indices >> 2) & ((1 << 2) - 1);
                let sub_index = self.n_indices & ((1 << 2) - 1);
                let index = index as u32;

                cluster_light_index_lists.get_mut().data[array_index][component] |=
                    index << (8 * sub_index);
            }
            ViewClusterBuffers::Storage {
                cluster_light_index_lists,
                ..
            } => {
                cluster_light_index_lists.get_mut().data.push(index as u32);
            }
        }

        self.n_indices += 1;
    }

    pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
        match &mut self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_light_index_lists,
                cluster_offsets_and_counts,
            } => {
                cluster_light_index_lists.write_buffer(render_device, render_queue);
                cluster_offsets_and_counts.write_buffer(render_device, render_queue);
            }
            ViewClusterBuffers::Storage {
                cluster_light_index_lists,
                cluster_offsets_and_counts,
            } => {
                cluster_light_index_lists.write_buffer(render_device, render_queue);
                cluster_offsets_and_counts.write_buffer(render_device, render_queue);
            }
        }
    }

    pub fn light_index_lists_binding(&self) -> Option<BindingResource> {
        match &self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_light_index_lists,
                ..
            } => cluster_light_index_lists.binding(),
            ViewClusterBuffers::Storage {
                cluster_light_index_lists,
                ..
            } => cluster_light_index_lists.binding(),
        }
    }

    pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
        match &self.buffers {
            ViewClusterBuffers::Uniform {
                cluster_offsets_and_counts,
                ..
            } => cluster_offsets_and_counts.binding(),
            ViewClusterBuffers::Storage {
                cluster_offsets_and_counts,
                ..
            } => cluster_offsets_and_counts.binding(),
        }
    }

    pub fn min_size_cluster_light_index_lists(
        buffer_binding_type: BufferBindingType,
    ) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuClusterLightIndexListsStorage::min_size(),
            BufferBindingType::Uniform => GpuClusterLightIndexListsUniform::min_size(),
        }
    }

    pub fn min_size_cluster_offsets_and_counts(
        buffer_binding_type: BufferBindingType,
    ) -> NonZeroU64 {
        match buffer_binding_type {
            BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
            BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
        }
    }
}

pub fn prepare_clusters(
    mut commands: Commands,
    render_device: Res<RenderDevice>,
    render_queue: Res<RenderQueue>,
    mesh_pipeline: Res<MeshPipeline>,
    global_light_meta: Res<GlobalLightMeta>,
    views: Query<
        (
            Entity,
            &ExtractedClusterConfig,
            &ExtractedClustersPointLights,
        ),
        With<RenderPhase<Transparent3d>>,
    >,
) {
    let render_device = render_device.into_inner();
    let supports_storage_buffers = matches!(
        mesh_pipeline.clustered_forward_buffer_binding_type,
        BufferBindingType::Storage { .. }
    );
    for (entity, cluster_config, extracted_clusters) in &views {
        let mut view_clusters_bindings =
            ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
        view_clusters_bindings.clear();

        let mut indices_full = false;

        let mut cluster_index = 0;
        for _y in 0..cluster_config.dimensions.y {
            for _x in 0..cluster_config.dimensions.x {
                for _z in 0..cluster_config.dimensions.z {
                    let offset = view_clusters_bindings.n_indices();
                    let cluster_lights = &extracted_clusters.data[cluster_index];
                    view_clusters_bindings.push_offset_and_counts(
                        offset,
                        cluster_lights.point_light_count,
                        cluster_lights.spot_light_count,
                    );

                    if !indices_full {
                        for entity in cluster_lights.iter() {
                            if let Some(light_index) = global_light_meta.entity_to_index.get(entity)
                            {
                                if view_clusters_bindings.n_indices()
                                    >= ViewClusterBindings::MAX_INDICES
                                    && !supports_storage_buffers
                                {
                                    warn!("Cluster light index lists is full! The PointLights in the view are affecting too many clusters.");
                                    indices_full = true;
                                    break;
                                }
                                view_clusters_bindings.push_index(*light_index);
                            }
                        }
                    }

                    cluster_index += 1;
                }
            }
        }

        view_clusters_bindings.write_buffers(render_device, &render_queue);

        commands.get_or_spawn(entity).insert(view_clusters_bindings);
    }
}

#[allow(clippy::too_many_arguments)]
pub fn queue_shadows<M: Material>(
    shadow_draw_functions: Res<DrawFunctions<Shadow>>,
    prepass_pipeline: Res<PrepassPipeline<M>>,
    casting_meshes: Query<(&Handle<Mesh>, &Handle<M>), Without<NotShadowCaster>>,
    render_meshes: Res<RenderAssets<Mesh>>,
    render_materials: Res<RenderMaterials<M>>,
    mut pipelines: ResMut<SpecializedMeshPipelines<PrepassPipeline<M>>>,
    pipeline_cache: Res<PipelineCache>,
    view_lights: Query<(Entity, &ViewLightEntities)>,
    mut view_light_shadow_phases: Query<(&LightEntity, &mut RenderPhase<Shadow>)>,
    point_light_entities: Query<&CubemapVisibleEntities, With<ExtractedPointLight>>,
    directional_light_entities: Query<&CascadesVisibleEntities, With<ExtractedDirectionalLight>>,
    spot_light_entities: Query<&VisibleEntities, With<ExtractedPointLight>>,
) where
    M::Data: PartialEq + Eq + Hash + Clone,
{
    for (entity, view_lights) in &view_lights {
        let draw_shadow_mesh = shadow_draw_functions.read().id::<DrawPrepass<M>>();
        for view_light_entity in view_lights.lights.iter().copied() {
            let (light_entity, mut shadow_phase) =
                view_light_shadow_phases.get_mut(view_light_entity).unwrap();
            let is_directional_light = matches!(light_entity, LightEntity::Directional { .. });
            let visible_entities = match light_entity {
                LightEntity::Directional {
                    light_entity,
                    cascade_index,
                } => directional_light_entities
                    .get(*light_entity)
                    .expect("Failed to get directional light visible entities")
                    .entities
                    .get(&entity)
                    .expect("Failed to get directional light visible entities for view")
                    .get(*cascade_index)
                    .expect("Failed to get directional light visible entities for cascade"),
                LightEntity::Point {
                    light_entity,
                    face_index,
                } => point_light_entities
                    .get(*light_entity)
                    .expect("Failed to get point light visible entities")
                    .get(*face_index),
                LightEntity::Spot { light_entity } => spot_light_entities
                    .get(*light_entity)
                    .expect("Failed to get spot light visible entities"),
            };
            // NOTE: Lights with shadow mapping disabled will have no visible entities
            // so no meshes will be queued
            for entity in visible_entities.iter().copied() {
                if let Ok((mesh_handle, material_handle)) = casting_meshes.get(entity) {
                    if let (Some(mesh), Some(material)) = (
                        render_meshes.get(mesh_handle),
                        render_materials.get(material_handle),
                    ) {
                        let mut mesh_key =
                            MeshPipelineKey::from_primitive_topology(mesh.primitive_topology)
                                | MeshPipelineKey::DEPTH_PREPASS;
                        if is_directional_light {
                            mesh_key |= MeshPipelineKey::DEPTH_CLAMP_ORTHO;
                        }
                        let alpha_mode = material.properties.alpha_mode;
                        match alpha_mode {
                            AlphaMode::Mask(_) => {
                                mesh_key |= MeshPipelineKey::ALPHA_MASK;
                            }
                            AlphaMode::Blend | AlphaMode::Premultiplied | AlphaMode::Add => {
                                mesh_key |= MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA;
                            }
                            _ => {}
                        }
                        let pipeline_id = pipelines.specialize(
                            &pipeline_cache,
                            &prepass_pipeline,
                            MaterialPipelineKey {
                                mesh_key,
                                bind_group_data: material.key.clone(),
                            },
                            &mesh.layout,
                        );

                        let pipeline_id = match pipeline_id {
                            Ok(id) => id,
                            Err(err) => {
                                error!("{}", err);
                                continue;
                            }
                        };

                        shadow_phase.add(Shadow {
                            draw_function: draw_shadow_mesh,
                            pipeline: pipeline_id,
                            entity,
                            distance: 0.0, // TODO: sort back-to-front
                        });
                    }
                }
            }
        }
    }
}

pub struct Shadow {
    pub distance: f32,
    pub entity: Entity,
    pub pipeline: CachedRenderPipelineId,
    pub draw_function: DrawFunctionId,
}

impl PhaseItem for Shadow {
    type SortKey = usize;

    #[inline]
    fn entity(&self) -> Entity {
        self.entity
    }

    #[inline]
    fn sort_key(&self) -> Self::SortKey {
        self.pipeline.id()
    }

    #[inline]
    fn draw_function(&self) -> DrawFunctionId {
        self.draw_function
    }

    #[inline]
    fn sort(items: &mut [Self]) {
        // The shadow phase is sorted by pipeline id for performance reasons.
        // Grouping all draw commands using the same pipeline together performs
        // better than rebinding everything at a high rate.
        radsort::sort_by_key(items, |item| item.pipeline.id());
    }
}

impl CachedRenderPipelinePhaseItem for Shadow {
    #[inline]
    fn cached_pipeline(&self) -> CachedRenderPipelineId {
        self.pipeline
    }
}

pub struct ShadowPassNode {
    main_view_query: QueryState<&'static ViewLightEntities>,
    view_light_query: QueryState<(&'static ShadowView, &'static RenderPhase<Shadow>)>,
}

impl ShadowPassNode {
    pub const IN_VIEW: &'static str = "view";

    pub fn new(world: &mut World) -> Self {
        Self {
            main_view_query: QueryState::new(world),
            view_light_query: QueryState::new(world),
        }
    }
}

impl Node for ShadowPassNode {
    fn input(&self) -> Vec<SlotInfo> {
        vec![SlotInfo::new(ShadowPassNode::IN_VIEW, SlotType::Entity)]
    }

    fn update(&mut self, world: &mut World) {
        self.main_view_query.update_archetypes(world);
        self.view_light_query.update_archetypes(world);
    }

    fn run(
        &self,
        graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        world: &World,
    ) -> Result<(), NodeRunError> {
        let view_entity = graph.get_input_entity(Self::IN_VIEW)?;
        if let Ok(view_lights) = self.main_view_query.get_manual(world, view_entity) {
            for view_light_entity in view_lights.lights.iter().copied() {
                let (view_light, shadow_phase) = self
                    .view_light_query
                    .get_manual(world, view_light_entity)
                    .unwrap();

                if shadow_phase.items.is_empty() {
                    continue;
                }

                let mut render_pass =
                    render_context.begin_tracked_render_pass(RenderPassDescriptor {
                        label: Some(&view_light.pass_name),
                        color_attachments: &[],
                        depth_stencil_attachment: Some(RenderPassDepthStencilAttachment {
                            view: &view_light.depth_texture_view,
                            depth_ops: Some(Operations {
                                load: LoadOp::Clear(0.0),
                                store: true,
                            }),
                            stencil_ops: None,
                        }),
                    });

                shadow_phase.render(&mut render_pass, world, view_light_entity);
            }
        }

        Ok(())
    }
}