1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
use crate::{
    AlphaMode, Material, MaterialPipeline, MaterialPipelineKey, PBR_PREPASS_SHADER_HANDLE,
    PBR_SHADER_HANDLE,
};
use bevy_asset::Handle;
use bevy_math::Vec4;
use bevy_reflect::{std_traits::ReflectDefault, FromReflect, Reflect, TypeUuid};
use bevy_render::{
    color::Color, mesh::MeshVertexBufferLayout, render_asset::RenderAssets, render_resource::*,
    texture::Image,
};

/// A material with "standard" properties used in PBR lighting
/// Standard property values with pictures here
/// <https://google.github.io/filament/Material%20Properties.pdf>.
///
/// May be created directly from a [`Color`] or an [`Image`].
#[derive(AsBindGroup, Reflect, FromReflect, Debug, Clone, TypeUuid)]
#[uuid = "7494888b-c082-457b-aacf-517228cc0c22"]
#[bind_group_data(StandardMaterialKey)]
#[uniform(0, StandardMaterialUniform)]
#[reflect(Default, Debug)]
pub struct StandardMaterial {
    /// The color of the surface of the material before lighting.
    ///
    /// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
    /// in between. If used together with a `base_color_texture`, this is factored into the final
    /// base color as `base_color * base_color_texture_value`
    ///
    /// Defaults to [`Color::WHITE`].
    pub base_color: Color,

    /// The texture component of the material's color before lighting.
    /// The actual pre-lighting color is `base_color * this_texture`.
    ///
    /// See [`base_color`] for details.
    ///
    /// You should set `base_color` to [`Color::WHITE`] (the default)
    /// if you want the texture to show as-is.
    ///
    /// Setting `base_color` to something else than white will tint
    /// the texture. For example, setting `base_color` to pure red will
    /// tint the texture red.
    ///
    /// [`base_color`]: StandardMaterial::base_color
    #[texture(1)]
    #[sampler(2)]
    pub base_color_texture: Option<Handle<Image>>,

    // Use a color for user friendliness even though we technically don't use the alpha channel
    // Might be used in the future for exposure correction in HDR
    /// Color the material "emits" to the camera.
    ///
    /// This is typically used for monitor screens or LED lights.
    /// Anything that can be visible even in darkness.
    ///
    /// The emissive color is added to what would otherwise be the material's visible color.
    /// This means that for a light emissive value, in darkness,
    /// you will mostly see the emissive component.
    ///
    /// The default emissive color is black, which doesn't add anything to the material color.
    ///
    /// Note that **an emissive material won't light up surrounding areas like a light source**,
    /// it just adds a value to the color seen on screen.
    pub emissive: Color,

    /// The emissive map, multiplies pixels with [`emissive`]
    /// to get the final "emitting" color of a surface.
    ///
    /// This color is multiplied by [`emissive`] to get the final emitted color.
    /// Meaning that you should set [`emissive`] to [`Color::WHITE`]
    /// if you want to use the full range of color of the emissive texture.
    ///
    /// [`emissive`]: StandardMaterial::emissive
    #[texture(3)]
    #[sampler(4)]
    pub emissive_texture: Option<Handle<Image>>,

    /// Linear perceptual roughness, clamped to `[0.089, 1.0]` in the shader.
    ///
    /// Defaults to `0.5`.
    ///
    /// Low values result in a "glossy" material with specular highlights,
    /// while values close to `1` result in rough materials.
    ///
    /// If used together with a roughness/metallic texture, this is factored into the final base
    /// color as `roughness * roughness_texture_value`.
    ///
    /// 0.089 is the minimum floating point value that won't be rounded down to 0 in the
    /// calculations used.
    //
    // Technically for 32-bit floats, 0.045 could be used.
    // See <https://google.github.io/filament/Filament.html#materialsystem/parameterization/>
    pub perceptual_roughness: f32,

    /// How "metallic" the material appears, within `[0.0, 1.0]`.
    ///
    /// This should be set to 0.0 for dielectric materials or 1.0 for metallic materials.
    /// For a hybrid surface such as corroded metal, you may need to use in-between values.
    ///
    /// Defaults to `0.00`, for dielectric.
    ///
    /// If used together with a roughness/metallic texture, this is factored into the final base
    /// color as `metallic * metallic_texture_value`.
    pub metallic: f32,

    /// Metallic and roughness maps, stored as a single texture.
    ///
    /// The blue channel contains metallic values,
    /// and the green channel contains the roughness values.
    /// Other channels are unused.
    ///
    /// Those values are multiplied by the scalar ones of the material,
    /// see [`metallic`] and [`perceptual_roughness`] for details.
    ///
    /// Note that with the default values of [`metallic`] and [`perceptual_roughness`],
    /// setting this texture has no effect. If you want to exclusively use the
    /// `metallic_roughness_texture` values for your material, make sure to set [`metallic`]
    /// and [`perceptual_roughness`] to `1.0`.
    ///
    /// [`metallic`]: StandardMaterial::metallic
    /// [`perceptual_roughness`]: StandardMaterial::perceptual_roughness
    #[texture(5)]
    #[sampler(6)]
    pub metallic_roughness_texture: Option<Handle<Image>>,

    /// Specular intensity for non-metals on a linear scale of `[0.0, 1.0]`.
    ///
    /// Use the value as a way to control the intensity of the
    /// specular highlight of the material, i.e. how reflective is the material,
    /// rather than the physical property "reflectance."
    ///
    /// Set to `0.0`, no specular highlight is visible, the highlight is strongest
    /// when `reflectance` is set to `1.0`.
    ///
    /// Defaults to `0.5` which is mapped to 4% reflectance in the shader.
    #[doc(alias = "specular_intensity")]
    pub reflectance: f32,

    /// Used to fake the lighting of bumps and dents on a material.
    ///
    /// A typical usage would be faking cobblestones on a flat plane mesh in 3D.
    ///
    /// # Notes
    ///
    /// Normal mapping with `StandardMaterial` and the core bevy PBR shaders requires:
    /// - A normal map texture
    /// - Vertex UVs
    /// - Vertex tangents
    /// - Vertex normals
    ///
    /// Tangents do not have to be stored in your model,
    /// they can be generated using the [`Mesh::generate_tangents`] method.
    /// If your material has a normal map, but still renders as a flat surface,
    /// make sure your meshes have their tangents set.
    ///
    /// [`Mesh::generate_tangents`]: bevy_render::mesh::Mesh::generate_tangents
    #[texture(9)]
    #[sampler(10)]
    pub normal_map_texture: Option<Handle<Image>>,

    /// Normal map textures authored for DirectX have their y-component flipped. Set this to flip
    /// it to right-handed conventions.
    pub flip_normal_map_y: bool,

    /// Specifies the level of exposure to ambient light.
    ///
    /// This is usually generated and stored automatically ("baked") by 3D-modelling software.
    ///
    /// Typically, steep concave parts of a model (such as the armpit of a shirt) are darker,
    /// because they have little exposed to light.
    /// An occlusion map specifies those parts of the model that light doesn't reach well.
    ///
    /// The material will be less lit in places where this texture is dark.
    /// This is similar to ambient occlusion, but built into the model.
    #[texture(7)]
    #[sampler(8)]
    pub occlusion_texture: Option<Handle<Image>>,

    /// Support two-sided lighting by automatically flipping the normals for "back" faces
    /// within the PBR lighting shader.
    ///
    /// Defaults to `false`.
    /// This does not automatically configure backface culling,
    /// which can be done via `cull_mode`.
    pub double_sided: bool,

    /// Whether to cull the "front", "back" or neither side of a mesh.
    /// If set to `None`, the two sides of the mesh are visible.
    ///
    /// Defaults to `Some(Face::Back)`.
    /// In bevy, the order of declaration of a triangle's vertices
    /// in [`Mesh`] defines the triangle's front face.
    ///
    /// When a triangle is in a viewport,
    /// if its vertices appear counter-clockwise from the viewport's perspective,
    /// then the viewport is seeing the triangle's front face.
    /// Conversely, if the vertices appear clockwise, you are seeing the back face.
    ///
    /// In short, in bevy, front faces winds counter-clockwise.
    ///
    /// Your 3D editing software should manage all of that.
    ///
    /// [`Mesh`]: bevy_render::mesh::Mesh
    // TODO: include this in reflection somehow (maybe via remote types like serde https://serde.rs/remote-derive.html)
    #[reflect(ignore)]
    pub cull_mode: Option<Face>,

    /// Whether to apply only the base color to this material.
    ///
    /// Normals, occlusion textures, roughness, metallic, reflectance, emissive,
    /// shadows, alpha mode and ambient light are ignored if this is set to `true`.
    pub unlit: bool,

    /// Whether to enable fog for this material.
    pub fog_enabled: bool,

    /// How to apply the alpha channel of the `base_color_texture`.
    ///
    /// See [`AlphaMode`] for details. Defaults to [`AlphaMode::Opaque`].
    pub alpha_mode: AlphaMode,

    /// Adjust rendered depth.
    ///
    /// A material with a positive depth bias will render closer to the
    /// camera while negative values cause the material to render behind
    /// other objects. This is independent of the viewport.
    ///
    /// `depth_bias` affects render ordering and depth write operations
    /// using the `wgpu::DepthBiasState::Constant` field.
    ///
    /// [z-fighting]: https://en.wikipedia.org/wiki/Z-fighting
    pub depth_bias: f32,
}

impl Default for StandardMaterial {
    fn default() -> Self {
        StandardMaterial {
            // White because it gets multiplied with texture values if someone uses
            // a texture.
            base_color: Color::rgb(1.0, 1.0, 1.0),
            base_color_texture: None,
            emissive: Color::BLACK,
            emissive_texture: None,
            // Matches Blender's default roughness.
            perceptual_roughness: 0.5,
            // Metallic should generally be set to 0.0 or 1.0.
            metallic: 0.0,
            metallic_roughness_texture: None,
            // Minimum real-world reflectance is 2%, most materials between 2-5%
            // Expressed in a linear scale and equivalent to 4% reflectance see
            // <https://google.github.io/filament/Material%20Properties.pdf>
            reflectance: 0.5,
            occlusion_texture: None,
            normal_map_texture: None,
            flip_normal_map_y: false,
            double_sided: false,
            cull_mode: Some(Face::Back),
            unlit: false,
            fog_enabled: true,
            alpha_mode: AlphaMode::Opaque,
            depth_bias: 0.0,
        }
    }
}

impl From<Color> for StandardMaterial {
    fn from(color: Color) -> Self {
        StandardMaterial {
            base_color: color,
            alpha_mode: if color.a() < 1.0 {
                AlphaMode::Blend
            } else {
                AlphaMode::Opaque
            },
            ..Default::default()
        }
    }
}

impl From<Handle<Image>> for StandardMaterial {
    fn from(texture: Handle<Image>) -> Self {
        StandardMaterial {
            base_color_texture: Some(texture),
            ..Default::default()
        }
    }
}

// NOTE: These must match the bit flags in bevy_pbr/src/render/pbr_types.wgsl!
bitflags::bitflags! {
    /// Bitflags info about the material a shader is currently rendering.
    /// This is accessible in the shader in the [`StandardMaterialUniform`]
    #[repr(transparent)]
    pub struct StandardMaterialFlags: u32 {
        const BASE_COLOR_TEXTURE         = (1 << 0);
        const EMISSIVE_TEXTURE           = (1 << 1);
        const METALLIC_ROUGHNESS_TEXTURE = (1 << 2);
        const OCCLUSION_TEXTURE          = (1 << 3);
        const DOUBLE_SIDED               = (1 << 4);
        const UNLIT                      = (1 << 5);
        const TWO_COMPONENT_NORMAL_MAP   = (1 << 6);
        const FLIP_NORMAL_MAP_Y          = (1 << 7);
        const FOG_ENABLED                = (1 << 8);
        const ALPHA_MODE_RESERVED_BITS   = (Self::ALPHA_MODE_MASK_BITS << Self::ALPHA_MODE_SHIFT_BITS); // ← Bitmask reserving bits for the `AlphaMode`
        const ALPHA_MODE_OPAQUE          = (0 << Self::ALPHA_MODE_SHIFT_BITS);                          // ← Values are just sequential values bitshifted into
        const ALPHA_MODE_MASK            = (1 << Self::ALPHA_MODE_SHIFT_BITS);                          //   the bitmask, and can range from 0 to 7.
        const ALPHA_MODE_BLEND           = (2 << Self::ALPHA_MODE_SHIFT_BITS);                          //
        const ALPHA_MODE_PREMULTIPLIED   = (3 << Self::ALPHA_MODE_SHIFT_BITS);                          //
        const ALPHA_MODE_ADD             = (4 << Self::ALPHA_MODE_SHIFT_BITS);                          //   Right now only values 0–5 are used, which still gives
        const ALPHA_MODE_MULTIPLY        = (5 << Self::ALPHA_MODE_SHIFT_BITS);                          // ← us "room" for two more modes without adding more bits
        const NONE                       = 0;
        const UNINITIALIZED              = 0xFFFF;
    }
}

impl StandardMaterialFlags {
    const ALPHA_MODE_MASK_BITS: u32 = 0b111;
    const ALPHA_MODE_SHIFT_BITS: u32 = 32 - Self::ALPHA_MODE_MASK_BITS.count_ones();
}

/// The GPU representation of the uniform data of a [`StandardMaterial`].
#[derive(Clone, Default, ShaderType)]
pub struct StandardMaterialUniform {
    /// Doubles as diffuse albedo for non-metallic, specular for metallic and a mix for everything
    /// in between.
    pub base_color: Vec4,
    // Use a color for user friendliness even though we technically don't use the alpha channel
    // Might be used in the future for exposure correction in HDR
    pub emissive: Vec4,
    /// Linear perceptual roughness, clamped to [0.089, 1.0] in the shader
    /// Defaults to minimum of 0.089
    pub roughness: f32,
    /// From [0.0, 1.0], dielectric to pure metallic
    pub metallic: f32,
    /// Specular intensity for non-metals on a linear scale of [0.0, 1.0]
    /// defaults to 0.5 which is mapped to 4% reflectance in the shader
    pub reflectance: f32,
    /// The [`StandardMaterialFlags`] accessible in the `wgsl` shader.
    pub flags: u32,
    /// When the alpha mode mask flag is set, any base color alpha above this cutoff means fully opaque,
    /// and any below means fully transparent.
    pub alpha_cutoff: f32,
}

impl AsBindGroupShaderType<StandardMaterialUniform> for StandardMaterial {
    fn as_bind_group_shader_type(&self, images: &RenderAssets<Image>) -> StandardMaterialUniform {
        let mut flags = StandardMaterialFlags::NONE;
        if self.base_color_texture.is_some() {
            flags |= StandardMaterialFlags::BASE_COLOR_TEXTURE;
        }
        if self.emissive_texture.is_some() {
            flags |= StandardMaterialFlags::EMISSIVE_TEXTURE;
        }
        if self.metallic_roughness_texture.is_some() {
            flags |= StandardMaterialFlags::METALLIC_ROUGHNESS_TEXTURE;
        }
        if self.occlusion_texture.is_some() {
            flags |= StandardMaterialFlags::OCCLUSION_TEXTURE;
        }
        if self.double_sided {
            flags |= StandardMaterialFlags::DOUBLE_SIDED;
        }
        if self.unlit {
            flags |= StandardMaterialFlags::UNLIT;
        }
        if self.fog_enabled {
            flags |= StandardMaterialFlags::FOG_ENABLED;
        }
        let has_normal_map = self.normal_map_texture.is_some();
        if has_normal_map {
            if let Some(texture) = images.get(self.normal_map_texture.as_ref().unwrap()) {
                match texture.texture_format {
                    // All 2-component unorm formats
                    TextureFormat::Rg8Unorm
                    | TextureFormat::Rg16Unorm
                    | TextureFormat::Bc5RgUnorm
                    | TextureFormat::EacRg11Unorm => {
                        flags |= StandardMaterialFlags::TWO_COMPONENT_NORMAL_MAP;
                    }
                    _ => {}
                }
            }
            if self.flip_normal_map_y {
                flags |= StandardMaterialFlags::FLIP_NORMAL_MAP_Y;
            }
        }
        // NOTE: 0.5 is from the glTF default - do we want this?
        let mut alpha_cutoff = 0.5;
        match self.alpha_mode {
            AlphaMode::Opaque => flags |= StandardMaterialFlags::ALPHA_MODE_OPAQUE,
            AlphaMode::Mask(c) => {
                alpha_cutoff = c;
                flags |= StandardMaterialFlags::ALPHA_MODE_MASK;
            }
            AlphaMode::Blend => flags |= StandardMaterialFlags::ALPHA_MODE_BLEND,
            AlphaMode::Premultiplied => flags |= StandardMaterialFlags::ALPHA_MODE_PREMULTIPLIED,
            AlphaMode::Add => flags |= StandardMaterialFlags::ALPHA_MODE_ADD,
            AlphaMode::Multiply => flags |= StandardMaterialFlags::ALPHA_MODE_MULTIPLY,
        };

        StandardMaterialUniform {
            base_color: self.base_color.as_linear_rgba_f32().into(),
            emissive: self.emissive.as_linear_rgba_f32().into(),
            roughness: self.perceptual_roughness,
            metallic: self.metallic,
            reflectance: self.reflectance,
            flags: flags.bits(),
            alpha_cutoff,
        }
    }
}

#[derive(Clone, PartialEq, Eq, Hash)]
pub struct StandardMaterialKey {
    normal_map: bool,
    cull_mode: Option<Face>,
    depth_bias: i32,
}

impl From<&StandardMaterial> for StandardMaterialKey {
    fn from(material: &StandardMaterial) -> Self {
        StandardMaterialKey {
            normal_map: material.normal_map_texture.is_some(),
            cull_mode: material.cull_mode,
            depth_bias: material.depth_bias as i32,
        }
    }
}

impl Material for StandardMaterial {
    fn specialize(
        _pipeline: &MaterialPipeline<Self>,
        descriptor: &mut RenderPipelineDescriptor,
        _layout: &MeshVertexBufferLayout,
        key: MaterialPipelineKey<Self>,
    ) -> Result<(), SpecializedMeshPipelineError> {
        if key.bind_group_data.normal_map {
            if let Some(fragment) = descriptor.fragment.as_mut() {
                fragment
                    .shader_defs
                    .push("STANDARDMATERIAL_NORMAL_MAP".into());
            }
        }
        descriptor.primitive.cull_mode = key.bind_group_data.cull_mode;
        if let Some(label) = &mut descriptor.label {
            *label = format!("pbr_{}", *label).into();
        }
        if let Some(depth_stencil) = descriptor.depth_stencil.as_mut() {
            depth_stencil.bias.constant = key.bind_group_data.depth_bias;
        }
        Ok(())
    }

    fn prepass_fragment_shader() -> ShaderRef {
        PBR_PREPASS_SHADER_HANDLE.typed().into()
    }

    fn fragment_shader() -> ShaderRef {
        PBR_SHADER_HANDLE.typed().into()
    }

    #[inline]
    fn alpha_mode(&self) -> AlphaMode {
        self.alpha_mode
    }

    #[inline]
    fn depth_bias(&self) -> f32 {
        self.depth_bias
    }
}