1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
use bevy::{math::Vec3A, prelude::*};
pub use rays::*;

#[non_exhaustive]
pub enum Primitive3d {
    ///Sphere{ radius: f32, position: Vec3 },
    Plane { point: Vec3, normal: Vec3 },
}

/// Holds computed intersection information
#[derive(Debug, PartialEq, Copy, Clone, Component)]
pub struct Intersection {
    position: Vec3,
    normal: Vec3,
    distance: f32,
    triangle: Option<Triangle>,
}
impl Intersection {
    pub fn new(
        position: Vec3,
        normal: Vec3,
        pick_distance: f32,
        triangle: Option<Triangle>,
    ) -> Self {
        Intersection {
            position,
            normal,
            distance: pick_distance,
            triangle,
        }
    }
    /// Position vector describing the intersection position.
    pub fn position(&self) -> Vec3 {
        self.position
    }
    /// Unit vector describing the normal of the intersected triangle.
    pub fn normal(&self) -> Vec3 {
        self.normal
    }
    pub fn normal_ray(&self) -> Ray3d {
        Ray3d::new(self.position, self.normal)
    }
    /// Distance from the picking source to the entity.
    pub fn distance(&self) -> f32 {
        self.distance
    }
    /// Triangle that was intersected with in World coordinates
    pub fn world_triangle(&self) -> Option<Triangle> {
        self.triangle
    }
}

/// Encapsulates Ray3D, preventing use of struct literal syntax. This allows us to guarantee that
/// the `Ray3d` direction is normalized, because it can only be instantiated with the constructor.
pub mod rays {
    use bevy::{
        math::Vec3A,
        prelude::*,
        render::{camera::Camera, primitives::Aabb},
    };

    /// A 3D ray, with an origin and direction. The direction is guaranteed to be normalized.
    #[derive(Debug, PartialEq, Copy, Clone, Default)]
    pub struct Ray3d {
        pub(crate) origin: Vec3A,
        pub(crate) direction: Vec3A,
    }

    impl Ray3d {
        /// Constructs a `Ray3d`, normalizing the direction vector.
        pub fn new(origin: Vec3, direction: Vec3) -> Self {
            Ray3d {
                origin: origin.into(),
                direction: direction.normalize().into(),
            }
        }
        /// Position vector describing the ray origin
        pub fn origin(&self) -> Vec3 {
            self.origin.into()
        }
        /// Unit vector describing the ray direction
        pub fn direction(&self) -> Vec3 {
            self.direction.into()
        }
        pub fn position(&self, distance: f32) -> Vec3 {
            (self.origin + self.direction * distance).into()
        }
        pub fn to_transform(self) -> Mat4 {
            let position = self.origin();
            let normal = self.direction();
            let up = Vec3::from([0.0, 1.0, 0.0]);
            let axis = up.cross(normal).normalize();
            let angle = up.dot(normal).acos();
            let epsilon = f32::EPSILON;
            let new_rotation = if angle.abs() > epsilon {
                Quat::from_axis_angle(axis, angle)
            } else {
                Quat::default()
            };
            Mat4::from_rotation_translation(new_rotation, position)
        }
        pub fn from_transform(transform: Mat4) -> Self {
            let pick_position_ndc = Vec3::from([0.0, 0.0, -1.0]);
            let pick_position = transform.project_point3(pick_position_ndc);
            let (_, _, source_origin) = transform.to_scale_rotation_translation();
            let ray_direction = pick_position - source_origin;
            Ray3d::new(source_origin, ray_direction)
        }
        pub fn from_screenspace(
            cursor_pos_screen: Vec2,
            windows: &Res<Windows>,
            camera: &Camera,
            camera_transform: &GlobalTransform,
        ) -> Option<Self> {
            let camera_position = camera_transform.compute_matrix();
            let window = match windows.get(camera.window) {
                Some(window) => window,
                None => {
                    error!("WindowId {} does not exist", camera.window);
                    return None;
                }
            };
            let screen_size = Vec2::from([window.width() as f32, window.height() as f32]);
            let projection_matrix = camera.projection_matrix;

            // Normalized device coordinate cursor position from (-1, -1, -1) to (1, 1, 1)
            let cursor_ndc = (cursor_pos_screen / screen_size) * 2.0 - Vec2::from([1.0, 1.0]);
            let cursor_pos_ndc_near: Vec3 = cursor_ndc.extend(-1.0);
            let cursor_pos_ndc_far: Vec3 = cursor_ndc.extend(1.0);

            // Use near and far ndc points to generate a ray in world space This method is more
            // robust than using the location of the camera as the start of the ray, because ortho
            // cameras have a focal point at infinity!
            let ndc_to_world: Mat4 = camera_position * projection_matrix.inverse();
            let cursor_pos_near: Vec3 = ndc_to_world.project_point3(cursor_pos_ndc_near);
            let cursor_pos_far: Vec3 = ndc_to_world.project_point3(cursor_pos_ndc_far);
            let ray_direction = cursor_pos_far - cursor_pos_near;
            Some(Ray3d::new(cursor_pos_near, ray_direction))
        }
        /// Checks if the ray intersects with an AABB of a mesh.
        pub fn intersects_aabb(&self, aabb: &Aabb, model_to_world: &Mat4) -> Option<[f32; 2]> {
            // Transform the ray to model space
            let world_to_model = model_to_world.inverse();
            let ray_dir: Vec3A = world_to_model.transform_vector3(self.direction()).into();
            let ray_origin: Vec3A = world_to_model.transform_point3(self.origin()).into();
            // Check if the ray intersects the mesh's AABB. It's useful to work in model space because
            // we can do an AABB intersection test, instead of an OBB intersection test.

            let t_0: Vec3A = (Vec3A::from(aabb.min()) - ray_origin) / ray_dir;
            let t_1: Vec3A = (Vec3A::from(aabb.max()) - ray_origin) / ray_dir;
            let t_min: Vec3A = t_0.min(t_1);
            let t_max: Vec3A = t_0.max(t_1);

            let mut hit_near = t_min.x;
            let mut hit_far = t_max.x;

            if hit_near > t_max.y || t_min.y > hit_far {
                return None;
            }

            if t_min.y > hit_near {
                hit_near = t_min.y;
            }
            if t_max.y < hit_far {
                hit_far = t_max.y;
            }

            if (hit_near > t_max.z) || (t_min.z > hit_far) {
                return None;
            }

            if t_min.z > hit_near {
                hit_near = t_min.z;
            }
            if t_max.z < hit_far {
                hit_far = t_max.z;
            }
            Some([hit_near, hit_far])
        }
    }
}

#[derive(Debug, PartialEq, Copy, Clone)]
pub struct Triangle {
    pub v0: Vec3A,
    pub v1: Vec3A,
    pub v2: Vec3A,
}
impl From<(Vec3A, Vec3A, Vec3A)> for Triangle {
    fn from(vertices: (Vec3A, Vec3A, Vec3A)) -> Self {
        Triangle {
            v0: vertices.0,
            v1: vertices.1,
            v2: vertices.2,
        }
    }
}
impl From<Vec<Vec3A>> for Triangle {
    fn from(vertices: Vec<Vec3A>) -> Self {
        Triangle {
            v0: *vertices.get(0).unwrap(),
            v1: *vertices.get(1).unwrap(),
            v2: *vertices.get(2).unwrap(),
        }
    }
}
impl From<[Vec3A; 3]> for Triangle {
    fn from(vertices: [Vec3A; 3]) -> Self {
        Triangle {
            v0: vertices[0],
            v1: vertices[1],
            v2: vertices[2],
        }
    }
}