1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
//! A small `bevy` plugin for raycasting against [`Mesh`]es.
//!
//! The plugin provides two ways of raycasting:
//! - An "immediate-mode" API, which allows you to raycast into the scene on-demand in any system.
//! - A "retained-mode" API, where raycasts are performed once every frame based on entities tagged
//!    with specific components.
//!
//! # Immediate Mode API
//!
//! See the `immediate` example for reference.
//!
//! This is the simplest way to get started. Add the [`Raycast`]
//! [`SystemParam`](bevy::ecs::system::SystemParam) to your system, and call [`Raycast::cast_ray`],
//! to get a list of intersections. Raycasts are performed immediately when you call the `cast_ray`
//! method. See the [`Raycast`] documentation for more details. You don't even need to add a plugin
//! to your application.
//!
//! # Retained Mode API
//!
//! See the `minimal` example for reference.
//!
//! This API requires you add a [`RaycastSource`] to the entity that will be generating rays, and a
//! [`RaycastMesh`] to all meshes that you want to raycast against. The [`RaycastSource`] has some
//! built in modes for common use cases. You can set this entity to cast based on where it is
//! pointing, using [`RaycastMethod::Transform`], or you can use [`RaycastMethod::Screenspace`]
//! along with a screenspace coordinate if the entity is a camera.
//!
//! These components are both generic, and raycasts will only happen between entities with the same
//! generic parameter. For example, [`RaycastSource<Foo>`] can cast rays against meshes with
//! [`RaycastMesh<Foo>`], but not against meshes that instead only have a [`RaycastMesh<Bar>`]
//! component.
//!
//! ## Comparison to Immediate Mode
//!
//! While the retained mode API requires adding components on entities, in return it's generally
//! more "hands-off". Once you add the components to entities, the plugin will run raycasts for you
//! every frame, and you can query your [`RaycastSource`]s to see what they have intersected that
//! frame.
//!
//! You can also think of this as being the "declarative" API. Instead of defining how the raycast
//! happens, you instead describe what you want. For example, "this entity should cast rays in the
//! direction it faces", and you can then query that entity to find out what it hit.
//!
//! By comparison, the immediate mode API is more imperative. You must define the raycast directly,
//! but in return you are immediately given the results of the raycast without needing to wait for
//! the scheduled raycasting system to run and query the results.
//!
//! # Use Cases
//!
//! This plugin is well suited for use cases where you don't want to use a full physics engine, you
//! are putting together a simple prototype, or you just want the simplest-possible API. Using the
//! [`Raycast`] system param requires no added components or plugins. You can just start raycasting
//! in your systems.
//!
//! ## Limitations
//!
//! This plugin runs entirely on the CPU, with minimal acceleration structures, and without support
//! for skinned meshes. However, there is a good chance that this simply won't be an issue for your
//! application. The provided `stress_test` example is a worst-case scenario that can help you judge
//! if the plugin will meet your performance needs. Using a laptop with an i7-11800H, I am able to
//! reach 110-530 fps in the stress test, raycasting against 1,000 monkey meshes.

#![allow(clippy::type_complexity)]

#[cfg(feature = "debug")]
pub mod debug;
mod primitives;
mod raycast;
pub mod system_param;

use std::{
    fmt::Debug,
    hash::{Hash, Hasher},
    marker::PhantomData,
};

use bevy::{
    math::Vec3A,
    prelude::*,
    reflect::TypePath,
    render::{
        camera::Camera,
        mesh::{Indices, Mesh, VertexAttributeValues},
        render_resource::PrimitiveTopology,
    },
    window::PrimaryWindow,
};

pub use crate::{primitives::*, raycast::*};
#[cfg(feature = "debug")]
pub use debug::*;

pub mod prelude {
    pub use crate::{
        low_latency_window_plugin,
        system_param::{Raycast, RaycastSettings, RaycastVisibility},
        DefaultRaycastingPlugin, Ray3d, RaycastMesh, RaycastMethod, RaycastPluginState,
        RaycastSource, RaycastSystem, SimplifiedMesh,
    };
}

use prelude::*;

pub struct DefaultRaycastingPlugin<T>(pub PhantomData<fn() -> T>);
impl<T: TypePath + Send + Sync> Plugin for DefaultRaycastingPlugin<T> {
    fn build(&self, app: &mut App) {
        app.init_resource::<RaycastPluginState<T>>().add_systems(
            First,
            (
                build_rays::<T>
                    .in_set(RaycastSystem::BuildRays::<T>)
                    .run_if(|state: Res<RaycastPluginState<T>>| state.build_rays),
                update_raycast::<T>
                    .in_set(RaycastSystem::UpdateRaycast::<T>)
                    .run_if(|state: Res<RaycastPluginState<T>>| state.update_raycast),
                update_target_intersections::<T>
                    .in_set(RaycastSystem::UpdateIntersections::<T>)
                    .run_if(|state: Res<RaycastPluginState<T>>| state.update_raycast),
            )
                .chain(),
        );

        app.register_type::<RaycastMesh<T>>()
            .register_type::<RaycastSource<T>>();

        #[cfg(feature = "debug")]
        app.add_systems(
            First,
            update_debug_cursor::<T>
                .in_set(RaycastSystem::UpdateDebugCursor::<T>)
                .run_if(|state: Res<RaycastPluginState<T>>| state.update_debug_cursor)
                .after(RaycastSystem::UpdateIntersections::<T>),
        );
    }
}
impl<T> Default for DefaultRaycastingPlugin<T> {
    fn default() -> Self {
        DefaultRaycastingPlugin(PhantomData)
    }
}

#[derive(SystemSet)]
pub enum RaycastSystem<T> {
    BuildRays,
    UpdateRaycast,
    UpdateIntersections,
    #[cfg(feature = "debug")]
    UpdateDebugCursor,
    _Phantom(PhantomData<fn() -> T>),
}
impl<T> PartialEq for RaycastSystem<T> {
    fn eq(&self, other: &Self) -> bool {
        core::mem::discriminant(self) == core::mem::discriminant(other)
    }
}
impl<T> Eq for RaycastSystem<T> {}
impl<T> Debug for RaycastSystem<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let set = std::any::type_name::<T>();
        match self {
            Self::BuildRays => write!(f, "BuildRays ({})", set),
            Self::UpdateRaycast => write!(f, "UpdateRaycast ({})", set),
            Self::UpdateIntersections => write!(f, "UpdateIntersections ({})", set),
            #[cfg(feature = "debug")]
            Self::UpdateDebugCursor => write!(f, "UpdateDebugCursor ({})", set),
            Self::_Phantom(_) => write!(f, "PhantomData<{}>", set),
        }
    }
}
impl<T> Hash for RaycastSystem<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let set = std::any::type_name::<T>();
        (core::mem::discriminant(self), set).hash(state);
    }
}
impl<T> Clone for RaycastSystem<T> {
    fn clone(&self) -> Self {
        match self {
            Self::BuildRays => Self::BuildRays,
            Self::UpdateRaycast => Self::UpdateRaycast,
            Self::UpdateIntersections => Self::UpdateIntersections,
            #[cfg(feature = "debug")]
            Self::UpdateDebugCursor => Self::UpdateDebugCursor,
            Self::_Phantom(_) => Self::_Phantom(PhantomData),
        }
    }
}

/// Global plugin state used to enable or disable all ray casting for a given type T.
#[derive(Component, Resource)]
pub struct RaycastPluginState<T> {
    pub build_rays: bool,
    pub update_raycast: bool,
    #[cfg(feature = "debug")]
    pub update_debug_cursor: bool,
    _marker: PhantomData<fn() -> T>,
}

impl<T> Default for RaycastPluginState<T> {
    fn default() -> Self {
        RaycastPluginState {
            build_rays: true,
            update_raycast: true,
            #[cfg(feature = "debug")]
            update_debug_cursor: false,
            _marker: PhantomData,
        }
    }
}

#[cfg(feature = "debug")]
impl<T> RaycastPluginState<T> {
    pub fn with_debug_cursor(self) -> Self {
        RaycastPluginState {
            update_debug_cursor: true,
            ..self
        }
    }
}

/// Marks an entity as pickable, with type T.
///
/// # Requirements
///
/// The marked entity must also have a [Mesh] component.
#[derive(Component, Debug, Reflect)]
#[reflect(Component)]
pub struct RaycastMesh<T: TypePath> {
    #[reflect(ignore)]
    pub intersections: Vec<(Entity, IntersectionData)>,
    #[reflect(ignore)]
    _marker: PhantomData<T>,
}

impl<T: TypePath> RaycastMesh<T> {
    /// Get a reference to the ray cast source's intersections. Returns an empty list if there are
    /// no intersections.
    pub fn intersections(&self) -> &[(Entity, IntersectionData)] {
        &self.intersections
    }
}

impl<T: TypePath> Default for RaycastMesh<T> {
    fn default() -> Self {
        RaycastMesh {
            intersections: Vec::new(),
            _marker: PhantomData,
        }
    }
}

impl<T: TypePath> Clone for RaycastMesh<T> {
    fn clone(&self) -> Self {
        RaycastMesh {
            intersections: self.intersections.clone(),
            _marker: PhantomData,
        }
    }
}

/// The `RaycastSource` component is used to generate rays with the specified `cast_method`. A `ray`
/// is generated when the RaycastSource is initialized, either by waiting for update_raycast system
/// to process the ray, or by using a `with_ray` function.`
#[derive(Component, Reflect)]
#[reflect(Component)]
pub struct RaycastSource<T: TypePath> {
    /// The method used to generate rays for this raycast.
    pub cast_method: RaycastMethod,
    /// When `true`, raycasting will only hit the nearest entity, skipping any entities that are
    /// further away. This can significantly improve performance in cases where a ray intersects
    /// many AABBs.
    pub should_early_exit: bool,
    /// Determines how raycasting should consider entity visibility.
    pub visibility: RaycastVisibility,
    #[reflect(skip_serializing)]
    pub ray: Option<Ray3d>,
    #[reflect(ignore)]
    intersections: Vec<(Entity, IntersectionData)>,
    #[reflect(ignore)]
    _marker: PhantomData<fn() -> T>,
}

impl<T: TypePath> Default for RaycastSource<T> {
    fn default() -> Self {
        RaycastSource {
            cast_method: RaycastMethod::Screenspace(Vec2::ZERO),
            should_early_exit: true,
            visibility: RaycastVisibility::MustBeVisibleAndInView,
            ray: None,
            intersections: Vec::new(),
            _marker: PhantomData,
        }
    }
}

impl<T: TypePath> Clone for RaycastSource<T> {
    fn clone(&self) -> Self {
        Self {
            cast_method: self.cast_method.clone(),
            should_early_exit: self.should_early_exit,
            visibility: self.visibility,
            ray: self.ray,
            intersections: self.intersections.clone(),
            _marker: PhantomData,
        }
    }
}

impl<T: TypePath> RaycastSource<T> {
    /// Instantiates a [RaycastSource]. It will not be initialized until the update_raycast system
    /// runs, or one of the `with_ray` functions is run.
    pub fn new() -> RaycastSource<T> {
        RaycastSource::default()
    }
    /// Initializes a [RaycastSource] with a valid screenspace ray.
    pub fn with_ray_screenspace(
        self,
        cursor_pos_screen: Vec2,
        camera: &Camera,
        camera_transform: &GlobalTransform,
        window: &Window,
    ) -> Self {
        RaycastSource {
            cast_method: RaycastMethod::Screenspace(cursor_pos_screen),
            ray: Ray3d::from_screenspace(cursor_pos_screen, camera, camera_transform, window),
            ..self
        }
    }
    /// Initializes a [RaycastSource] with a valid ray derived from a transform.
    pub fn with_ray_transform(self, transform: Mat4) -> Self {
        RaycastSource {
            cast_method: RaycastMethod::Transform,
            ray: Some(Ray3d::from_transform(transform)),
            ..self
        }
    }

    /// Set the `should_early_exit` field of this raycast source.
    pub fn with_early_exit(self, should_early_exit: bool) -> Self {
        Self {
            should_early_exit,
            ..self
        }
    }

    /// Set the `visibility` field of this raycast source.
    pub fn with_visibility(self, visibility: RaycastVisibility) -> Self {
        Self { visibility, ..self }
    }

    /// Instantiates and initializes a [RaycastSource] with a valid screenspace ray.
    pub fn new_screenspace(
        cursor_pos_screen: Vec2,
        camera: &Camera,
        camera_transform: &GlobalTransform,
        window: &Window,
    ) -> Self {
        RaycastSource::new().with_ray_screenspace(
            cursor_pos_screen,
            camera,
            camera_transform,
            window,
        )
    }
    /// Initializes a [RaycastSource] with a valid ray derived from a transform.
    pub fn new_transform(transform: Mat4) -> Self {
        RaycastSource::new().with_ray_transform(transform)
    }
    /// Instantiates a [RaycastSource] with [RaycastMethod::Transform], and an empty ray. It will
    /// not be initialized until the [update_raycast] system is run and a [GlobalTransform] is
    /// present on this entity.
    ///
    /// # Warning
    /// Only use this if the entity this is associated with will have its [Transform] or
    /// [GlobalTransform] specified elsewhere. If the [GlobalTransform] is not set, this ray casting
    /// source will never be able to generate a raycast.
    pub fn new_transform_empty() -> Self {
        RaycastSource {
            cast_method: RaycastMethod::Transform,
            ..Default::default()
        }
    }
    /// Get a reference to the ray cast source's intersections, if one exists.
    pub fn get_intersections(&self) -> Option<&[(Entity, IntersectionData)]> {
        if self.intersections.is_empty() {
            None
        } else {
            Some(&self.intersections)
        }
    }
    /// Get a reference to the ray cast source's intersections. Returns an empty list if there are
    /// no intersections.
    pub fn intersections(&self) -> &[(Entity, IntersectionData)] {
        &self.intersections
    }
    /// Get a reference to the nearest intersection point, if there is one.
    pub fn get_nearest_intersection(&self) -> Option<(Entity, &IntersectionData)> {
        if self.intersections.is_empty() {
            None
        } else {
            self.intersections.first().map(|(e, i)| (*e, i))
        }
    }
    /// Run an intersection check between this [`RaycastSource`] and a 3D primitive [`Primitive3d`].
    pub fn intersect_primitive(&self, shape: Primitive3d) -> Option<IntersectionData> {
        Some(self.ray?.intersects_primitive(shape)?.into())
    }
    /// Get a copy of the ray cast source's ray.
    pub fn get_ray(&self) -> Option<Ray3d> {
        self.ray
    }

    /// Get a mutable reference to the ray cast source's intersections.
    pub fn intersections_mut(&mut self) -> &mut Vec<(Entity, IntersectionData)> {
        &mut self.intersections
    }

    /// Returns `true` if this is using [`RaycastMethod::Screenspace`].
    pub fn is_screenspace(&self) -> bool {
        matches!(self.cast_method, RaycastMethod::Screenspace(_))
    }
}

/// Specifies the method used to generate rays.
#[derive(Clone, Debug, Reflect)]
pub enum RaycastMethod {
    /// Specify screen coordinates relative to the camera component associated with this entity.
    ///
    /// # Component Requirements
    ///
    /// This requires a [Camera] component on this [RaycastSource]'s entity, to determine where the
    /// screenspace ray is firing from in the world.
    Screenspace(Vec2),
    /// Use a transform in world space to define a pick ray. This transform is applied to a vector
    /// at the origin pointing up to generate a ray.
    ///
    /// # Component Requirements
    ///
    /// Requires a [GlobalTransform] component associated with this [RaycastSource]'s entity.
    Transform,
}

pub fn build_rays<T: TypePath>(
    mut pick_source_query: Query<(
        &mut RaycastSource<T>,
        Option<&GlobalTransform>,
        Option<&Camera>,
    )>,
    window: Query<&Window, With<PrimaryWindow>>,
) {
    for (mut pick_source, transform, camera) in &mut pick_source_query {
        pick_source.ray = match &mut pick_source.cast_method {
            RaycastMethod::Screenspace(cursor_pos_screen) => {
                // Get all the info we need from the camera and window
                let window = match window.get_single() {
                    Ok(window) => window,
                    Err(_) => {
                        error!("No primary window found, cannot cast ray");
                        return;
                    }
                };
                let camera = match camera {
                    Some(camera) => camera,
                    None => {
                        error!(
                        "The PickingSource is a CameraScreenSpace but has no associated Camera component"
                    );
                        return;
                    }
                };
                let camera_transform = match transform {
                    Some(transform) => transform,
                    None => {
                        error!(
                        "The PickingSource is a CameraScreenSpace but has no associated GlobalTransform component"
                    );
                        return;
                    }
                };
                Ray3d::from_screenspace(*cursor_pos_screen, camera, camera_transform, window)
            }
            // Use the specified transform as the origin and direction of the ray
            RaycastMethod::Transform => {
                let transform = match transform {
                    Some(matrix) => matrix,
                    None => {
                        error!(
                        "The PickingSource is a Transform but has no associated GlobalTransform component"
                    );
                        return
                    }
                }
                .compute_matrix();
                Some(Ray3d::from_transform(transform))
            }
        };
    }
}

/// Iterates through all entities with the [RaycastMesh] component, checking for
/// intersections. If these entities have bounding volumes, these will be checked first, greatly
/// accelerating the process.
pub fn update_raycast<T: TypePath + Send + Sync + 'static>(
    mut raycast: system_param::Raycast,
    mut pick_source_query: Query<&mut RaycastSource<T>>,
    targets: Query<&RaycastMesh<T>>,
) {
    for mut pick_source in &mut pick_source_query {
        if let Some(ray) = pick_source.ray {
            pick_source.intersections.clear();

            let filter = |entity| targets.contains(entity);
            let test = |_| pick_source.should_early_exit;
            let settings = RaycastSettings::default()
                .with_filter(&filter)
                .with_early_exit_test(&test)
                .with_visibility(pick_source.visibility);
            pick_source.intersections = raycast.cast_ray(ray, &settings).to_vec();
        }
    }
}

pub fn update_target_intersections<T: TypePath + Send + Sync>(
    sources: Query<(Entity, &RaycastSource<T>)>,
    mut meshes: Query<&mut RaycastMesh<T>>,
    mut previously_updated_raycast_meshes: Local<Vec<Entity>>,
) {
    // Clear any entities with intersections last frame
    for entity in previously_updated_raycast_meshes.drain(..) {
        if let Ok(mesh) = meshes.get_mut(entity).as_mut() {
            mesh.intersections.clear();
        }
    }

    for (source_entity, source) in sources.iter() {
        for (mesh_entity, intersection) in source.intersections().iter() {
            if let Ok(mut mesh) = meshes.get_mut(*mesh_entity) {
                mesh.intersections
                    .push((source_entity, intersection.to_owned()));
                previously_updated_raycast_meshes.push(*mesh_entity);
            }
        }
    }
}

/// Cast a ray on a mesh, and returns the intersection
pub fn ray_intersection_over_mesh(
    mesh: &Mesh,
    mesh_transform: &Mat4,
    ray: &Ray3d,
    backface_culling: Backfaces,
) -> Option<IntersectionData> {
    if mesh.primitive_topology() != PrimitiveTopology::TriangleList {
        error!(
            "Invalid intersection check: `TriangleList` is the only supported `PrimitiveTopology`"
        );
        return None;
    }
    // Get the vertex positions from the mesh reference resolved from the mesh handle
    let vertex_positions: &Vec<[f32; 3]> = match mesh.attribute(Mesh::ATTRIBUTE_POSITION) {
        None => panic!("Mesh does not contain vertex positions"),
        Some(vertex_values) => match &vertex_values {
            VertexAttributeValues::Float32x3(positions) => positions,
            _ => panic!("Unexpected types in {:?}", Mesh::ATTRIBUTE_POSITION),
        },
    };
    let vertex_normals: Option<&[[f32; 3]]> =
        if let Some(normal_values) = mesh.attribute(Mesh::ATTRIBUTE_NORMAL) {
            match &normal_values {
                VertexAttributeValues::Float32x3(normals) => Some(normals),
                _ => None,
            }
        } else {
            None
        };

    if let Some(indices) = &mesh.indices() {
        // Iterate over the list of pick rays that belong to the same group as this mesh
        match indices {
            Indices::U16(vertex_indices) => ray_mesh_intersection(
                mesh_transform,
                vertex_positions,
                vertex_normals,
                ray,
                Some(vertex_indices),
                backface_culling,
            ),
            Indices::U32(vertex_indices) => ray_mesh_intersection(
                mesh_transform,
                vertex_positions,
                vertex_normals,
                ray,
                Some(vertex_indices),
                backface_culling,
            ),
        }
    } else {
        ray_mesh_intersection(
            mesh_transform,
            vertex_positions,
            vertex_normals,
            ray,
            None::<&Vec<u32>>,
            backface_culling,
        )
    }
}

pub trait IntoUsize: Copy {
    fn into_usize(self) -> usize;
}
impl IntoUsize for u16 {
    fn into_usize(self) -> usize {
        self as usize
    }
}
impl IntoUsize for u32 {
    fn into_usize(self) -> usize {
        self as usize
    }
}

/// Checks if a ray intersects a mesh, and returns the nearest intersection if one exists.
pub fn ray_mesh_intersection(
    mesh_transform: &Mat4,
    vertex_positions: &[[f32; 3]],
    vertex_normals: Option<&[[f32; 3]]>,
    ray: &Ray3d,
    indices: Option<&Vec<impl IntoUsize>>,
    backface_culling: Backfaces,
) -> Option<IntersectionData> {
    // The ray cast can hit the same mesh many times, so we need to track which hit is
    // closest to the camera, and record that.
    let mut min_pick_distance = f32::MAX;
    let mut pick_intersection = None;

    let world_to_mesh = mesh_transform.inverse();

    let mesh_space_ray = Ray3d::new(
        world_to_mesh.transform_point3(ray.origin()),
        world_to_mesh.transform_vector3(ray.direction()),
    );

    if let Some(indices) = indices {
        // Make sure this chunk has 3 vertices to avoid a panic.
        if indices.len() % 3 != 0 {
            warn!("Index list not a multiple of 3");
            return None;
        }
        // Now that we're in the vector of vertex indices, we want to look at the vertex
        // positions for each triangle, so we'll take indices in chunks of three, where each
        // chunk of three indices are references to the three vertices of a triangle.
        for index in indices.chunks(3) {
            let tri_vertex_positions = [
                Vec3A::from(vertex_positions[index[0].into_usize()]),
                Vec3A::from(vertex_positions[index[1].into_usize()]),
                Vec3A::from(vertex_positions[index[2].into_usize()]),
            ];
            let tri_normals = vertex_normals.map(|normals| {
                [
                    Vec3A::from(normals[index[0].into_usize()]),
                    Vec3A::from(normals[index[1].into_usize()]),
                    Vec3A::from(normals[index[2].into_usize()]),
                ]
            });
            let intersection = triangle_intersection(
                tri_vertex_positions,
                tri_normals,
                min_pick_distance,
                mesh_space_ray,
                backface_culling,
            );
            if let Some(i) = intersection {
                pick_intersection = Some(IntersectionData::new(
                    mesh_transform.transform_point3(i.position()),
                    mesh_transform.transform_vector3(i.normal()),
                    mesh_transform
                        .transform_vector3(mesh_space_ray.direction() * i.distance())
                        .length(),
                    i.triangle().map(|tri| {
                        Triangle::from([
                            mesh_transform.transform_point3a(tri.v0),
                            mesh_transform.transform_point3a(tri.v1),
                            mesh_transform.transform_point3a(tri.v2),
                        ])
                    }),
                ));
                min_pick_distance = i.distance();
            }
        }
    } else {
        for i in (0..vertex_positions.len()).step_by(3) {
            let tri_vertex_positions = [
                Vec3A::from(vertex_positions[i]),
                Vec3A::from(vertex_positions[i + 1]),
                Vec3A::from(vertex_positions[i + 2]),
            ];
            let tri_normals = vertex_normals.map(|normals| {
                [
                    Vec3A::from(normals[i]),
                    Vec3A::from(normals[i + 1]),
                    Vec3A::from(normals[i + 2]),
                ]
            });
            let intersection = triangle_intersection(
                tri_vertex_positions,
                tri_normals,
                min_pick_distance,
                mesh_space_ray,
                backface_culling,
            );
            if let Some(i) = intersection {
                pick_intersection = Some(IntersectionData::new(
                    mesh_transform.transform_point3(i.position()),
                    mesh_transform.transform_vector3(i.normal()),
                    mesh_transform
                        .transform_vector3(mesh_space_ray.direction() * i.distance())
                        .length(),
                    i.triangle().map(|tri| {
                        Triangle::from([
                            mesh_transform.transform_point3a(tri.v0),
                            mesh_transform.transform_point3a(tri.v1),
                            mesh_transform.transform_point3a(tri.v2),
                        ])
                    }),
                ));
                min_pick_distance = i.distance();
            }
        }
    }
    pick_intersection
}

fn triangle_intersection(
    tri_vertices: [Vec3A; 3],
    tri_normals: Option<[Vec3A; 3]>,
    max_distance: f32,
    ray: Ray3d,
    backface_culling: Backfaces,
) -> Option<IntersectionData> {
    if tri_vertices
        .iter()
        .any(|&vertex| (vertex - ray.origin).length_squared() < max_distance.powi(2))
    {
        // Run the raycast on the ray and triangle
        if let Some(ray_hit) = ray_triangle_intersection(&ray, &tri_vertices, backface_culling) {
            let distance = *ray_hit.distance();
            if distance > 0.0 && distance < max_distance {
                let position = ray.position(distance);
                let normal = if let Some(normals) = tri_normals {
                    let u = ray_hit.uv_coords().0;
                    let v = ray_hit.uv_coords().1;
                    let w = 1.0 - u - v;
                    normals[1] * u + normals[2] * v + normals[0] * w
                } else {
                    (tri_vertices.v1() - tri_vertices.v0())
                        .cross(tri_vertices.v2() - tri_vertices.v0())
                        .normalize()
                };
                let intersection = IntersectionData::new(
                    position,
                    normal.into(),
                    distance,
                    Some(tri_vertices.to_triangle()),
                );
                return Some(intersection);
            }
        }
    }
    None
}

pub trait TriangleTrait {
    fn v0(&self) -> Vec3A;
    fn v1(&self) -> Vec3A;
    fn v2(&self) -> Vec3A;
    fn to_triangle(self) -> Triangle;
}
impl TriangleTrait for [Vec3A; 3] {
    fn v0(&self) -> Vec3A {
        self[0]
    }
    fn v1(&self) -> Vec3A {
        self[1]
    }
    fn v2(&self) -> Vec3A {
        self[2]
    }

    fn to_triangle(self) -> Triangle {
        Triangle::from(self)
    }
}
impl TriangleTrait for Triangle {
    fn v0(&self) -> Vec3A {
        self.v0
    }

    fn v1(&self) -> Vec3A {
        self.v1
    }

    fn v2(&self) -> Vec3A {
        self.v2
    }

    fn to_triangle(self) -> Triangle {
        self
    }
}

#[derive(Component)]
pub struct SimplifiedMesh {
    pub mesh: Handle<Mesh>,
}

#[derive(Component)]
pub struct NoBackfaceCulling;

/// Used for examples to reduce picking latency. Not relevant code for the examples.
#[doc(hidden)]
#[allow(dead_code)]
pub fn low_latency_window_plugin() -> bevy::window::WindowPlugin {
    bevy::window::WindowPlugin {
        primary_window: Some(bevy::window::Window {
            present_mode: bevy::window::PresentMode::AutoNoVsync,
            ..Default::default()
        }),
        ..Default::default()
    }
}