1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! This is a [`bevy`] plugin that adds framepacing and framelimiting to improve input latency and
//! power use.
//!
//! # How it works
//!
//! This works by sleeping the app immediately before the event loop starts. In doing so, this
//! minimizes the time from when user input is captured (start of event loop), to when the frame is
//! presented on screen. Graphically, it looks like this:
//!
//! ```none
//!           /-- latency --\             /-- latency --\
//!  sleep -> input -> render -> sleep -> input -> render
//!  \----- event loop -----/    \----- event loop -----/
//! ```
//!
//! One of the interesting benefits of this is that you can keep latency low even if the framerate
//! is limited to a low value. Assuming you are able to reach the target frametime, there should be
//! no difference in motion-to-photon latency when limited to 10fps or 120fps.
//!
//! ```none
//!                same                                              same
//!           /-- latency --\                                   /-- latency --\
//!  sleep -> input -> render -> sleeeeeeeeeeeeeeeeeeeeeeeep -> input -> render
//!  \----- event loop -----/    \---------------- event loop ----------------/
//!           60 fps                           limited to 10 fps
//! ```

#![deny(missing_docs)]

#[cfg(not(target_arch = "wasm32"))]
use bevy::winit::WinitWindows;
use bevy::{
    prelude::*,
    render::{pipelined_rendering::RenderExtractApp, RenderApp, RenderSet},
    utils::Instant,
};

use std::{
    sync::{Arc, Mutex},
    time::Duration,
};

#[cfg(feature = "framepace_debug")]
pub mod debug;

/// Adds framepacing and framelimiting functionality to your [`App`].
#[derive(Debug, Clone, Component)]
pub struct FramepacePlugin;
impl Plugin for FramepacePlugin {
    fn build(&self, app: &mut App) {
        app.register_type::<FramepaceSettings>();

        let limit = FrametimeLimit::default();
        let settings = FramepaceSettings::default();
        let settings_proxy = FramepaceSettingsProxy::default();
        let stats = FramePaceStats::default();

        app.insert_resource(settings)
            .insert_resource(settings_proxy.clone())
            .insert_resource(limit.clone())
            .insert_resource(stats.clone())
            .add_systems(Update, update_proxy_resources);

        #[cfg(not(target_arch = "wasm32"))]
        app.add_systems(Update, get_display_refresh_rate);

        if let Ok(sub_app) = app.get_sub_app_mut(RenderExtractApp) {
            sub_app
                .insert_resource(FrameTimer::default())
                .insert_resource(settings_proxy)
                .insert_resource(limit)
                .insert_resource(stats)
                .add_systems(Main, framerate_limiter);
        } else {
            app.sub_app_mut(RenderApp)
                .insert_resource(FrameTimer::default())
                .insert_resource(settings_proxy)
                .insert_resource(limit)
                .insert_resource(stats)
                .add_systems(
                    bevy::render::Render,
                    framerate_limiter
                        .in_set(RenderSet::Cleanup)
                        .after(World::clear_entities),
                );
        }
    }
}

/// Framepacing plugin configuration.
#[derive(Debug, Clone, Resource, Reflect)]
#[reflect(Resource)]
pub struct FramepaceSettings {
    /// Configures the framerate limiting strategy.
    pub limiter: Limiter,
}
impl FramepaceSettings {
    /// Builds plugin settings with the specified [`Limiter`] configuration.
    pub fn with_limiter(mut self, limiter: Limiter) -> Self {
        self.limiter = limiter;
        self
    }
}
impl Default for FramepaceSettings {
    fn default() -> FramepaceSettings {
        FramepaceSettings {
            limiter: Limiter::Auto,
        }
    }
}

#[derive(Default, Debug, Clone, Resource)]
struct FramepaceSettingsProxy {
    /// Configures the framerate limiting strategy.
    limiter: Arc<Mutex<Limiter>>,
}

impl FramepaceSettingsProxy {
    fn is_enabled(&self) -> bool {
        self.limiter.try_lock().iter().any(|l| l.is_enabled())
    }
}

fn update_proxy_resources(settings: Res<FramepaceSettings>, proxy: Res<FramepaceSettingsProxy>) {
    if settings.is_changed() {
        if let Ok(mut limiter) = proxy.limiter.try_lock() {
            *limiter = settings.limiter.clone();
        }
    }
}

/// Configures the framelimiting technique for the app.
#[derive(Debug, Default, Clone, Reflect)]
pub enum Limiter {
    /// Uses the window's refresh rate to set the frametime limit, updating when the window changes
    /// monitors.
    #[default]
    Auto,
    /// Set a fixed manual frametime limit. This should be greater than the monitors frametime
    /// (`1.0 / monitor frequency`).
    Manual(Duration),
    /// Disables frame limiting
    Off,
}

impl Limiter {
    /// Returns `true` if the [`Limiter`] is enabled.
    pub fn is_enabled(&self) -> bool {
        !matches!(self, Limiter::Off)
    }

    /// Constructs a new [`Limiter`] from the provided `framerate`.
    pub fn from_framerate(framerate: f64) -> Self {
        Limiter::Manual(Duration::from_secs_f64(1.0 / framerate))
    }
}

impl std::fmt::Display for Limiter {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let output = match self {
            Limiter::Auto => "Auto".into(),
            Limiter::Manual(t) => format!("{:.2} fps", 1.0 / t.as_secs_f32()),
            Limiter::Off => "Off".into(),
        };
        write!(f, "{}", output)
    }
}

/// Current frametime limit based on settings and monitor refresh rate.
#[derive(Debug, Default, Clone, Resource)]
struct FrametimeLimit(Arc<Mutex<Duration>>);

/// Tracks the instant of the end of the previous frame.
#[derive(Debug, Clone, Resource, Reflect)]
pub struct FrameTimer {
    sleep_end: Instant,
}
impl Default for FrameTimer {
    fn default() -> Self {
        FrameTimer {
            sleep_end: Instant::now(),
        }
    }
}

#[cfg(not(target_arch = "wasm32"))]
fn get_display_refresh_rate(
    settings: Res<FramepaceSettings>,
    winit: NonSend<WinitWindows>,
    windows: Query<Entity, With<Window>>,
    frame_limit: Res<FrametimeLimit>,
) {
    let new_frametime = match settings.limiter {
        Limiter::Auto => match detect_frametime(winit, windows.iter()) {
            Some(frametime) => frametime,
            None => return,
        },
        Limiter::Manual(frametime) => frametime,
        Limiter::Off => {
            #[cfg(feature = "framepace_debug")]
            if settings.is_changed() {
                info!("Frame limiter disabled");
            }
            return;
        }
    };

    if let Ok(mut limit) = frame_limit.0.try_lock() {
        if new_frametime != *limit {
            #[cfg(feature = "framepace_debug")]
            info!("Frametime limit changed to: {:?}", new_frametime);
            *limit = new_frametime;
        }
    }
}

#[cfg(not(target_arch = "wasm32"))]
fn detect_frametime(
    winit: NonSend<WinitWindows>,
    windows: impl Iterator<Item = Entity>,
) -> Option<Duration> {
    let best_framerate = {
        windows
            .filter_map(|e| winit.get_window(e))
            .filter_map(|w| w.current_monitor())
            .filter_map(|monitor| monitor.refresh_rate_millihertz())
            .min()? as f64
            / 1000.0
            - 0.5 // Winit only provides integer refresh rate values. We need to round down to handle the worst case scenario of a rounded refresh rate.
    };

    let best_frametime = Duration::from_secs_f64(1.0 / best_framerate);
    Some(best_frametime)
}

/// Holds frame time measurements for framepacing diagnostics
#[derive(Clone, Debug, Default, Resource)]
pub struct FramePaceStats {
    frametime: Arc<Mutex<Duration>>,
    oversleep: Arc<Mutex<Duration>>,
}

/// Accurately sleeps until it's time to start the next frame.
///
/// The `spin_sleep` dependency makes it possible to get extremely accurate sleep times across
/// platforms. Using `std::thread::sleep()` will not be precise enough, especially windows. Using a
/// spin lock, even with `std::hint::spin_loop()`, will result in significant power usage.
///
/// `spin_sleep` sleeps as long as possible given the platform's sleep accuracy, and spins for the
/// remainder. The dependency is however not WASM compatible, which is fine, because frame limiting
/// should not be used in a browser; this would compete with the browser's frame limiter.
fn framerate_limiter(
    mut timer: ResMut<FrameTimer>,
    target_frametime: Res<FrametimeLimit>,
    stats: Res<FramePaceStats>,
    settings: Res<FramepaceSettingsProxy>,
) {
    if let Ok(limit) = target_frametime.0.try_lock() {
        let frame_time = timer.sleep_end.elapsed();
        #[cfg(not(target_arch = "wasm32"))]
        {
            let oversleep = stats
                .oversleep
                .try_lock()
                .as_deref()
                .cloned()
                .unwrap_or_default();
            let sleep_time = limit.saturating_sub(frame_time + oversleep);
            if settings.is_enabled() {
                spin_sleep::sleep(sleep_time);
            }
        }

        let frame_time_total = timer.sleep_end.elapsed();
        timer.sleep_end = Instant::now();
        if let Ok(mut frametime) = stats.frametime.try_lock() {
            *frametime = frame_time;
        }
        if let Ok(mut oversleep) = stats.oversleep.try_lock() {
            *oversleep = frame_time_total.saturating_sub(*limit);
        }
    };
}