logo
pub struct HashMap<K, V, S = RandomState, A = Global> where
    A: Allocator + Clone
{ /* private fields */ }
Expand description

A hash map implemented with quadratic probing and SIMD lookup.

The default hashing algorithm is currently AHash, though this is subject to change at any point in the future. This hash function is very fast for all types of keys, but this algorithm will typically not protect against attacks such as HashDoS.

The hashing algorithm can be replaced on a per-HashMap basis using the default, with_hasher, and with_capacity_and_hasher methods. Many alternative algorithms are available on crates.io, such as the fnv crate.

It is required that the keys implement the Eq and Hash traits, although this can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself, it is important that the following property holds:

k1 == k2 -> hash(k1) == hash(k2)

In other words, if two keys are equal, their hashes must be equal.

It is a logic error for a key to be modified in such a way that the key’s hash, as determined by the Hash trait, or its equality, as determined by the Eq trait, changes while it is in the map. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

It is also a logic error for the Hash implementation of a key to panic. This is generally only possible if the trait is implemented manually. If a panic does occur then the contents of the HashMap may become corrupted and some items may be dropped from the table.

Examples

use hashbrown::HashMap;

// Type inference lets us omit an explicit type signature (which
// would be `HashMap<String, String>` in this example).
let mut book_reviews = HashMap::new();

// Review some books.
book_reviews.insert(
    "Adventures of Huckleberry Finn".to_string(),
    "My favorite book.".to_string(),
);
book_reviews.insert(
    "Grimms' Fairy Tales".to_string(),
    "Masterpiece.".to_string(),
);
book_reviews.insert(
    "Pride and Prejudice".to_string(),
    "Very enjoyable.".to_string(),
);
book_reviews.insert(
    "The Adventures of Sherlock Holmes".to_string(),
    "Eye lyked it alot.".to_string(),
);

// Check for a specific one.
// When collections store owned values (String), they can still be
// queried using references (&str).
if !book_reviews.contains_key("Les Misérables") {
    println!("We've got {} reviews, but Les Misérables ain't one.",
             book_reviews.len());
}

// oops, this review has a lot of spelling mistakes, let's delete it.
book_reviews.remove("The Adventures of Sherlock Holmes");

// Look up the values associated with some keys.
let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"];
for &book in &to_find {
    match book_reviews.get(book) {
        Some(review) => println!("{}: {}", book, review),
        None => println!("{} is unreviewed.", book)
    }
}

// Look up the value for a key (will panic if the key is not found).
println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]);

// Iterate over everything.
for (book, review) in &book_reviews {
    println!("{}: \"{}\"", book, review);
}

HashMap also implements an Entry API, which allows for more complex methods of getting, setting, updating and removing keys and their values:

use hashbrown::HashMap;

// type inference lets us omit an explicit type signature (which
// would be `HashMap<&str, u8>` in this example).
let mut player_stats = HashMap::new();

fn random_stat_buff() -> u8 {
    // could actually return some random value here - let's just return
    // some fixed value for now
    42
}

// insert a key only if it doesn't already exist
player_stats.entry("health").or_insert(100);

// insert a key using a function that provides a new value only if it
// doesn't already exist
player_stats.entry("defence").or_insert_with(random_stat_buff);

// update a key, guarding against the key possibly not being set
let stat = player_stats.entry("attack").or_insert(100);
*stat += random_stat_buff();

The easiest way to use HashMap with a custom key type is to derive Eq and Hash. We must also derive PartialEq.

use hashbrown::HashMap;

#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
    name: String,
    country: String,
}

impl Viking {
    /// Creates a new Viking.
    fn new(name: &str, country: &str) -> Viking {
        Viking { name: name.to_string(), country: country.to_string() }
    }
}

// Use a HashMap to store the vikings' health points.
let mut vikings = HashMap::new();

vikings.insert(Viking::new("Einar", "Norway"), 25);
vikings.insert(Viking::new("Olaf", "Denmark"), 24);
vikings.insert(Viking::new("Harald", "Iceland"), 12);

// Use derived implementation to print the status of the vikings.
for (viking, health) in &vikings {
    println!("{:?} has {} hp", viking, health);
}

A HashMap with fixed list of elements can be initialized from an array:

use hashbrown::HashMap;

let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)]
    .iter().cloned().collect();
// use the values stored in map

Implementations

Creates an empty HashMap.

The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();

Creates an empty HashMap with the specified capacity.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::with_capacity(10);

Creates an empty HashMap using the given allocator.

The hash map is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Creates an empty HashMap with the specified capacity using the given allocator.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Creates an empty HashMap which will use the given hash builder to hash keys.

The created map has the default initial capacity.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);

Creates an empty HashMap with the specified capacity, using hash_builder to hash the keys.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);

Returns a reference to the underlying allocator.

Creates an empty HashMap which will use the given hash builder to hash keys. It will be allocated with the given allocator.

The created map has the default initial capacity.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_hasher(s);
map.insert(1, 2);

Creates an empty HashMap with the specified capacity, using hash_builder to hash the keys. It will be allocated with the given allocator.

The hash map will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash map will not allocate.

Warning: hash_builder is normally randomly generated, and is designed to allow HashMaps to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut map = HashMap::with_capacity_and_hasher(10, s);
map.insert(1, 2);

Returns a reference to the map’s BuildHasher.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let hasher = DefaultHashBuilder::default();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &DefaultHashBuilder = map.hasher();

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

Examples
use hashbrown::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert!(map.capacity() >= 100);

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for key in map.keys() {
    println!("{}", key);
}

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values() {
    println!("{}", val);
}

An iterator visiting all values mutably in arbitrary order. The iterator element type is &'a mut V.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();

map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for val in map.values_mut() {
    *val = *val + 10;
}

for val in map.values() {
    println!("{}", val);
}

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
}

An iterator visiting all key-value pairs in arbitrary order, with mutable references to the values. The iterator element type is (&'a K, &'a mut V).

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Update all values
for (_, val) in map.iter_mut() {
    *val *= 2;
}

for (key, val) in &map {
    println!("key: {} val: {}", key, val);
}

Returns the number of elements in the map.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);

Returns true if the map contains no elements.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());

Clears the map, returning all key-value pairs as an iterator. Keeps the allocated memory for reuse.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.insert(2, "b");

for (k, v) in a.drain().take(1) {
    assert!(k == 1 || k == 2);
    assert!(v == "a" || v == "b");
}

assert!(a.is_empty());

Retains only the elements specified by the predicate.

In other words, remove all pairs (k, v) such that f(&k,&mut v) returns false.

Examples
use hashbrown::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect();
map.retain(|&k, _| k % 2 == 0);
assert_eq!(map.len(), 4);

Drains elements which are true under the given predicate, and returns an iterator over the removed items.

In other words, move all pairs (k, v) such that f(&k,&mut v) returns true out into another iterator.

When the returned DrainedFilter is dropped, any remaining elements that satisfy the predicate are dropped from the table.

Examples
use hashbrown::HashMap;

let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
let drained: HashMap<i32, i32> = map.drain_filter(|k, _v| k % 2 == 0).collect();

let mut evens = drained.keys().cloned().collect::<Vec<_>>();
let mut odds = map.keys().cloned().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);

Clears the map, removing all key-value pairs. Keeps the allocated memory for reuse.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
a.insert(1, "a");
a.clear();
assert!(a.is_empty());

Creates a consuming iterator visiting all the keys in arbitrary order. The map cannot be used after calling this. The iterator element type is K.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let vec: Vec<&str> = map.into_keys().collect();

Creates a consuming iterator visiting all the values in arbitrary order. The map cannot be used after calling this. The iterator element type is V.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

let vec: Vec<i32> = map.into_values().collect();

Reserves capacity for at least additional more elements to be inserted in the HashMap. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, i32> = HashMap::new();
map.reserve(10);

Tries to reserve capacity for at least additional more elements to be inserted in the given HashMap<K,V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples
use hashbrown::HashMap;
let mut map: HashMap<&str, isize> = HashMap::new();
map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");

Shrinks the capacity of the map as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples
use hashbrown::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to_fit();
assert!(map.capacity() >= 2);

Shrinks the capacity of the map with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

This function does nothing if the current capacity is smaller than the supplied minimum capacity.

Examples
use hashbrown::HashMap;

let mut map: HashMap<i32, i32> = HashMap::with_capacity(100);
map.insert(1, 2);
map.insert(3, 4);
assert!(map.capacity() >= 100);
map.shrink_to(10);
assert!(map.capacity() >= 10);
map.shrink_to(0);
assert!(map.capacity() >= 2);
map.shrink_to(10);
assert!(map.capacity() >= 2);

Gets the given key’s corresponding entry in the map for in-place manipulation.

Examples
use hashbrown::HashMap;

let mut letters = HashMap::new();

for ch in "a short treatise on fungi".chars() {
    let counter = letters.entry(ch).or_insert(0);
    *counter += 1;
}

assert_eq!(letters[&'s'], 2);
assert_eq!(letters[&'t'], 3);
assert_eq!(letters[&'u'], 1);
assert_eq!(letters.get(&'y'), None);

Gets the given key’s corresponding entry by reference in the map for in-place manipulation.

Examples
use hashbrown::HashMap;

let mut words: HashMap<String, usize> = HashMap::new();
let source = ["poneyland", "horseyland", "poneyland", "poneyland"];
for (i, &s) in source.iter().enumerate() {
    let counter = words.entry_ref(s).or_insert(0);
    *counter += 1;
}

assert_eq!(words["poneyland"], 3);
assert_eq!(words["horseyland"], 1);

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);

Returns the key-value pair corresponding to the supplied key, with a mutable reference to value.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
let (k, v) = map.get_key_value_mut(&1).unwrap();
assert_eq!(k, &1);
assert_eq!(v, &mut "a");
*v = "b";
assert_eq!(map.get_key_value_mut(&1), Some((&1, &mut "b")));
assert_eq!(map.get_key_value_mut(&2), None);

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

Returns a mutable reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
if let Some(x) = map.get_mut(&1) {
    *x = "b";
}
assert_eq!(map[&1], "b");

Attempts to get mutable references to N values in the map at once.

Returns an array of length N with the results of each query. For soundness, at most one mutable reference will be returned to any value. None will be returned if any of the keys are duplicates or missing.

Examples
use hashbrown::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    Some([
        &mut 1807,
        &mut 1800,
    ]),
);

// Missing keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(got, None);

// Duplicate keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "Athenæum",
]);
assert_eq!(got, None);

Attempts to get mutable references to N values in the map at once, without validating that the values are unique.

Returns an array of length N with the results of each query. None will be returned if any of the keys are missing.

For a safe alternative see [get_many_mut].

Safety

Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.

Examples
use hashbrown::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_mut([
    "Athenæum",
    "Library of Congress",
]);
assert_eq!(
    got,
    Some([
        &mut 1807,
        &mut 1800,
    ]),
);

// Missing keys result in None
let got = libraries.get_many_mut([
    "Athenæum",
    "New York Public Library",
]);
assert_eq!(got, None);

Attempts to get mutable references to N values in the map at once, with immutable references to the corresponding keys.

Returns an array of length N with the results of each query. For soundness, at most one mutable reference will be returned to any value. None will be returned if any of the keys are duplicates or missing.

Examples
use hashbrown::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_key_value_mut([
    "Bodleian Library",
    "Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
    got,
    Some([
        (&"Bodleian Library".to_string(), &mut 1602),
        (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691),
    ]),
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
    "Bodleian Library",
    "Gewandhaus",
]);
assert_eq!(got, None);

// Duplicate keys result in None
let got = libraries.get_many_key_value_mut([
    "Bodleian Library",
    "Herzogin-Anna-Amalia-Bibliothek",
    "Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(got, None);

Attempts to get mutable references to N values in the map at once, with immutable references to the corresponding keys, without validating that the values are unique.

Returns an array of length N with the results of each query. None will be returned if any of the keys are missing.

For a safe alternative see [get_many_key_value_mut].

Safety

Calling this method with overlapping keys is undefined behavior even if the resulting references are not used.

Examples
use hashbrown::HashMap;

let mut libraries = HashMap::new();
libraries.insert("Bodleian Library".to_string(), 1602);
libraries.insert("Athenæum".to_string(), 1807);
libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691);
libraries.insert("Library of Congress".to_string(), 1800);

let got = libraries.get_many_key_value_mut([
    "Bodleian Library",
    "Herzogin-Anna-Amalia-Bibliothek",
]);
assert_eq!(
    got,
    Some([
        (&"Bodleian Library".to_string(), &mut 1602),
        (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691),
    ]),
);
// Missing keys result in None
let got = libraries.get_many_key_value_mut([
    "Bodleian Library",
    "Gewandhaus",
]);
assert_eq!(got, None);

Inserts a key-value pair into the map.

If the map did not have this key present, None is returned.

If the map did have this key present, the value is updated, and the old value is returned. The key is not updated, though; this matters for types that can be == without being identical. See the module-level documentation for more.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
assert_eq!(map.insert(37, "a"), None);
assert_eq!(map.is_empty(), false);

map.insert(37, "b");
assert_eq!(map.insert(37, "c"), Some("b"));
assert_eq!(map[&37], "c");

Insert a key-value pair into the map without checking if the key already exists in the map.

Returns a reference to the key and value just inserted.

This operation is safe if a key does not exist in the map.

However, if a key exists in the map already, the behavior is unspecified: this operation may panic, loop forever, or any following operation with the map may panic, loop forever or return arbitrary result.

That said, this operation (and following operations) are guaranteed to not violate memory safety.

This operation is faster than regular insert, because it does not perform lookup before insertion.

This operation is useful during initial population of the map. For example, when constructing a map from another map, we know that keys are unique.

Tries to insert a key-value pair into the map, and returns a mutable reference to the value in the entry.

Errors

If the map already had this key present, nothing is updated, and an error containing the occupied entry and the value is returned.

Examples

Basic usage:

use hashbrown::HashMap;

let mut map = HashMap::new();
assert_eq!(map.try_insert(37, "a").unwrap(), &"a");

let err = map.try_insert(37, "b").unwrap_err();
assert_eq!(err.entry.key(), &37);
assert_eq!(err.entry.get(), &"a");
assert_eq!(err.value, "b");

Removes a key from the map, returning the value at the key if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove(&1), Some("a"));
assert_eq!(map.remove(&1), None);

pub fn remove_entry<Q>(&mut self, k: &Q) -> Option<(K, V)> where
    K: Borrow<Q>,
    Q: Hash + Eq + ?Sized

Removes a key from the map, returning the stored key and value if the key was previously in the map.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.remove_entry(&1), Some((1, "a")));
assert_eq!(map.remove(&1), None);

pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A>

Creates a raw entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched. After this, insertions into a vacant entry still require an owned key to be provided.

Raw entries are useful for such exotic situations as:

  • Hash memoization
  • Deferring the creation of an owned key until it is known to be required
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Because raw entries provide much more low-level control, it’s much easier to put the HashMap into an inconsistent state which, while memory-safe, will cause the map to produce seemingly random results. Higher-level and more foolproof APIs like entry should be preferred when possible.

In particular, the hash used to initialized the raw entry must still be consistent with the hash of the key that is ultimately stored in the entry. This is because implementations of HashMap may need to recompute hashes when resizing, at which point only the keys are available.

Raw entries give mutable access to the keys. This must not be used to modify how the key would compare or hash, as the map will not re-evaluate where the key should go, meaning the keys may become “lost” if their location does not reflect their state. For instance, if you change a key so that the map now contains keys which compare equal, search may start acting erratically, with two keys randomly masking each other. Implementations are free to assume this doesn’t happen (within the limits of memory-safety).

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Creates an empty HashMap<K, V, S, A>, with the Default value for the hasher and allocator.

Deserialize this value from the given Serde deserializer. Read more

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one)

Reserves capacity in a collection for the given number of additional elements. Read more

Inserts all new key-values from the iterator and replaces values with existing keys with new values returned from the iterator.

Extends a collection with the contents of an iterator. Read more

🔬 This is a nightly-only experimental API. (extend_one)

Extends a collection with exactly one element.

🔬 This is a nightly-only experimental API. (extend_one)

Reserves capacity in a collection for the given number of additional elements. Read more

Examples
use hashbrown::HashMap;

let map1 = HashMap::from([(1, 2), (3, 4)]);
let map2: HashMap<_, _> = [(1, 2), (3, 4)].into();
assert_eq!(map1, map2);

Converts to this type from the input type.

Creates a value from an iterator. Read more

Constructs a concrete instance of Self from a reflected value.

Returns a reference to the value corresponding to the supplied key.

Panics

Panics if the key is not present in the HashMap.

The returned type after indexing.

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Creates an iterator from a value. Read more

Creates a consuming iterator, that is, one that moves each key-value pair out of the map in arbitrary order. The map cannot be used after calling this.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);

// Not possible with .iter()
let vec: Vec<(&str, i32)> = map.into_iter().collect();

The type of the elements being iterated over.

Which kind of iterator are we turning this into?

Returns a reference to the value associated with the given key. Read more

Returns a mutable reference to the value associated with the given key. Read more

Returns the key-value pair at index by reference, or None if out of bounds.

Returns the number of elements in the map.

Returns an iterator over the key-value pairs of the map.

Clones the map, producing a DynamicMap.

Inserts a key-value pair into the map. Read more

Returns true if the list contains no elements.

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Tries to get or insert the value for the given key using the pre-computed hash first. If the PreHashMap does not already contain the key, it will clone it and insert the value returned by func. Read more

Returns the type name of the underlying type.

Returns the TypeInfo of the underlying type. Read more

Returns the value as a Box<dyn Any>.

Returns the value as a &dyn Any.

Returns the value as a &mut dyn Any.

Casts this type to a reflected value

Casts this type to a mutable reflected value

Applies a reflected value to this value. Read more

Performs a type-checked assignment of a reflected value to this value. Read more

Returns an enumeration of “kinds” of type. Read more

Returns a mutable enumeration of “kinds” of type. Read more

Clones the value as a Reflect trait object. Read more

Returns a “partial equality” comparison result. Read more

Returns a hash of the value (which includes the type). Read more

Debug formatter for the value. Read more

Returns a serializable version of the value. Read more

Serialize this value into the given Serde serializer. Read more

Returns the compile-time info for the underlying type. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Return the T ShaderType for self. When used in AsBindGroup derives, it is safe to assume that all images in self exist. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s. Read more

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s. Read more

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait. Read more

Compare self to key and return true if they are equal.

Returns the argument unchanged.

Creates Self using data from the given World

Returns a reference to the value specified by path. Read more

Returns a mutable reference to the value specified by path. Read more

Returns a statically typed reference to the value specified by path.

Returns a statically typed mutable reference to the value specified by path. Read more

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more