[−][src]Crate betrusted_rt
Minimal startup / runtime for RISC-V CPU's
Minimum Supported Rust Version (MSRV)
This crate is guaranteed to compile on stable Rust 1.31 and up. It might
compile with older versions but that may change in any new patch release.
Note that riscv64imac-unknown-none-elf
and riscv64gc-unknown-none-elf
targets
are not supported on stable yet.
Features
This crate provides
-
Before main initialization of the
.bss
and.data
sections. -
#[entry]
to declare the entry point of the program -
#[pre_init]
to run code beforestatic
variables are initialized -
A linker script that encodes the memory layout of a generic RISC-V microcontroller. This linker script is missing some information that must be supplied through a
memory.x
file (see example below). This file must be supplied using rustflags and listed beforelink.x
. Arbitrary filename can be use instead ofmemory.x
. -
A
_sheap
symbol at whose address you can locate a heap.
$ cargo new --bin app && cd $_
$ # add this crate as a dependency
$ edit Cargo.toml && cat $_
[dependencies]
riscv-rt = "0.6.1"
panic-halt = "0.2.0"
$ # memory layout of the device
$ edit memory.x && cat $_
MEMORY
{
RAM : ORIGIN = 0x80000000, LENGTH = 16K
FLASH : ORIGIN = 0x20000000, LENGTH = 16M
}
REGION_ALIAS("REGION_TEXT", FLASH);
REGION_ALIAS("REGION_RODATA", FLASH);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);
REGION_ALIAS("REGION_HEAP", RAM);
REGION_ALIAS("REGION_STACK", RAM);
$ edit src/main.rs && cat $_
#![no_std] #![no_main] extern crate panic_halt; use riscv_rt::entry; // use `main` as the entry point of this application // `main` is not allowed to return #[entry] fn main() -> ! { // do something here loop { } }
$ mkdir .cargo && edit .cargo/config && cat $_
[target.riscv32imac-unknown-none-elf]
rustflags = [
"-C", "link-arg=-Tmemory.x",
"-C", "link-arg=-Tlink.x",
]
[build]
target = "riscv32imac-unknown-none-elf"
$ edit build.rs && cat $_
use std::env; use std::fs::File; use std::io::Write; use std::path::Path; /// Put the linker script somewhere the linker can find it. fn main() { let out_dir = env::var("OUT_DIR").expect("No out dir"); let dest_path = Path::new(&out_dir); let mut f = File::create(&dest_path.join("memory.x")) .expect("Could not create file"); f.write_all(include_bytes!("memory.x")) .expect("Could not write file"); println!("cargo:rustc-link-search={}", dest_path.display()); println!("cargo:rerun-if-changed=memory.x"); println!("cargo:rerun-if-changed=build.rs"); }
$ cargo build
$ riscv32-unknown-elf-objdump -Cd $(find target -name app) | head
Disassembly of section .text:
20000000 <_start>:
20000000: 800011b7 lui gp,0x80001
20000004: 80018193 addi gp,gp,-2048 # 80000800 <_stack_start+0xffffc800>
20000008: 80004137 lui sp,0x80004
Symbol interfaces
This crate makes heavy use of symbols, linker sections and linker scripts to provide most of its functionality. Below are described the main symbol interfaces.
memory.x
This file supplies the information about the device to the linker.
MEMORY
The main information that this file must provide is the memory layout of
the device in the form of the MEMORY
command. The command is documented
here, but at a minimum you'll want to create at least one memory region.
To support different relocation models (RAM-only, FLASH+RAM) multiple regions are used:
REGION_TEXT
- for.init
,.trap
and.text
sectionsREGION_RODATA
- for.rodata
section and storing initial values for.data
sectionREGION_DATA
- for.data
sectionREGION_BSS
- for.bss
sectionREGION_HEAP
- for the heap areaREGION_STACK
- for hart stacks
Specific aliases for these regions must be defined in memory.x
file (see example below).
_stext
This symbol provides the loading address of .text
section. This value can be changed
to override the loading address of the firmware (for example, in case of bootloader present).
If omitted this symbol value will default to ORIGIN(REGION_TEXT)
.
_stack_start
This symbol provides the address at which the call stack will be allocated. The call stack grows downwards so this address is usually set to the highest valid RAM address plus one (this is an invalid address but the processor will decrement the stack pointer before using its value as an address).
In case of multiple harts present, this address defines the initial stack pointer for hart 0.
Stack pointer for hart N
is calculated as _stack_start - N * _hart_stack_size
.
If omitted this symbol value will default to ORIGIN(REGION_STACK) + LENGTH(REGION_STACK)
.
Example
Allocating the call stack on a different RAM region.
MEMORY
{
L2_LIM : ORIGIN = 0x08000000, LENGTH = 1M
RAM : ORIGIN = 0x80000000, LENGTH = 16K
FLASH : ORIGIN = 0x20000000, LENGTH = 16M
}
REGION_ALIAS("REGION_TEXT", FLASH);
REGION_ALIAS("REGION_RODATA", FLASH);
REGION_ALIAS("REGION_DATA", RAM);
REGION_ALIAS("REGION_BSS", RAM);
REGION_ALIAS("REGION_HEAP", RAM);
REGION_ALIAS("REGION_STACK", L2_LIM);
_stack_start = ORIGIN(L2_LIM) + LENGTH(L2_LIM);
_max_hart_id
This symbol defines the maximum hart id suppoted. All harts with id
greater than _max_hart_id
will be redirected to abort()
.
This symbol is supposed to be redefined in platform support crates for multi-core targets.
If omitted this symbol value will default to 0 (single core).
_hart_stack_size
This symbol defines stack area size for one hart.
If omitted this symbol value will default to 2K.
_heap_size
This symbol provides the size of a heap region. The default value is 0. You can set _heap_size
to a non-zero value if you are planning to use heap allocations.
_sheap
This symbol is located in RAM right after the .bss
and .data
sections.
You can use the address of this symbol as the start address of a heap
region. This symbol is 4 byte aligned so that address will be a multiple of 4.
Example
extern crate some_allocator; extern "C" { static _sheap: u8; static _heap_size: u8; } fn main() { unsafe { let heap_bottom = &_sheap as *const u8 as usize; let heap_size = &_heap_size as *const u8 as usize; some_allocator::initialize(heap_bottom, heap_size); } }
_mp_hook
This function is called from all the harts and must return true only for one hart, which will perform memory initialization. For other harts it must return false and implement wake-up in platform-dependent way (e.g. after waiting for a user interrupt).
This function can be redefined in the following way:
#[export_name = "_mp_hook"] pub extern "Rust" fn mp_hook() -> bool { // ... }
Default implementation of this function wakes hart 0 and busy-loops all the other harts.
Functions
start_rust⚠ | Rust entry point (_start_rust) |
start_trap_rust | Trap entry point rust (_start_trap_rust) |
Attribute Macros
entry | Attribute to declare the entry point of the program |
pre_init | Attribute to mark which function will be called at the beginning of the reset handler. |