1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
use core::sync::atomic::{AtomicBool, Ordering};
use core::ops::{Deref, DerefMut};
use core::cell::UnsafeCell;

use crate::syscall;
use crate::sched::event;
use super::Error;

/// Atomic mutual exclusion
///
/// similar to [`std::sync::Mutex`](https://doc.rust-lang.org/std/sync/struct.Mutex.html).
///
/// A mutex can be used
/// - as a simple and efficient form of communication between tasks, by
///   synchronizing acces to share data between multiple tasks
/// - to protect data races on shared data or peripherals
///
/// # Example
///
pub struct Mutex<T> {
    id: UnsafeCell<usize>,
    inner: UnsafeCell<T>,
    lock: AtomicBool,
}

impl<T> Mutex<T> {
    pub fn new(element: T) -> Self {
        let mutex = Mutex {
            id: UnsafeCell::new(0),
            inner: UnsafeCell::new(element),
            lock: AtomicBool::new(false),
        };
        mutex.register().ok();
        mutex
    }

    /// Allocate an event ot the mutex.
    ///
    /// **Note:** The kernel must be initialized before calling this method.
    fn register(&self) -> Result<(),Error> {
        let id = syscall::event_register();
        if id == 0 {
            Err(Error::OutOfMemory)
        } else {
            // NOTE(unsafe): only called before the mutex is in use
            unsafe { self.id.get().write(id); }
            Ok(())
        }
    }

    /// Try to lock the mutex (non-blocking). Returns a [`MutexGuard`] or an
    /// error if the mutex is not available or poisoned.
    pub fn try_lock(&self) -> Result<MutexGuard<'_,T>, Error> {
        if self.raw_try_lock() {
            Ok(MutexGuard::new(&self))
        } else {
            Err(Error::WouldBlock)
        }
    }

    /// Try to lock the mutex (blocking). Returns a [`MutexGuard`] or an
    /// error if the request timed out or the mutex was poisoned.
    ///
    /// **Note:** The timeout function is not implemented yet.
    pub fn lock(&self, timeout: u32) ->  Result<MutexGuard<'_,T>, Error> {
        if self.raw_try_lock() {
            return Ok(MutexGuard::new(&self));
        } else {
            let id = unsafe { *self.id.get() };
            match syscall::event_await(id, timeout) {
                Ok(_) => {
                    self.raw_try_lock();
                    Ok(MutexGuard::new(&self))
                },
                Err(event::Error::TimeOut) => Err(Error::TimeOut),
                Err(_) => Err(Error::Poisoned),
            }
        }
    }

    fn raw_try_lock(&self) -> bool {
        self.lock.compare_exchange(false, true,
                                   Ordering::Acquire,
                                   Ordering::Relaxed).is_ok()
    }

    fn raw_unlock(&self) {
        self.lock.store(false, Ordering::Release);
        // NOTE(unsafe): `id` is not changed after startup
        syscall::event_fire(unsafe { *self.id.get() });
    }
}

unsafe impl<T> Sync for Mutex<T> {}

/// Scoped mutex
///
/// similar to [`std::sync::MutexGuard`](https://doc.rust-lang.org/std/sync/struct.MutexGuard.html).
pub struct MutexGuard<'a,T> {
    lock: &'a Mutex<T>,
}

impl<'a,T> MutexGuard<'a,T> {
    fn new(lock: &'a Mutex<T>) -> Self {
        MutexGuard {
            lock,
        }
    }
}

impl<'a,T> Deref for MutexGuard<'a,T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        unsafe { &*self.lock.inner.get() }
    }
}

impl<'a,T> DerefMut for MutexGuard<'a,T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.lock.inner.get() }
    }
}

impl<'a,T> Drop for MutexGuard<'a,T> {
    fn drop(&mut self) {
        self.lock.raw_unlock();
    }
}