1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//! Heap implementation based on a free linked list. The list is sorted by
//! memory address, so that adjecent free blocks can be found and merged easily.

use core::alloc::Layout;
use core::cell::Cell;
use core::mem::size_of;
use core::ptr;
use core::ptr::{NonNull, slice_from_raw_parts_mut};
use bern_units::memory_size::Byte;
use crate::alloc::allocator::{Allocator, AllocError};
use crate::mem::linked_list::{LinkedList, Node};
use crate::mem::boxed::Box;

struct Free {
    size: usize,
}

const MIN_FREE_SIZE: usize = size_of::<Node<Free>>();

pub struct Heap {
    free: LinkedList<Free>,
    size: Cell<usize>,
    end: Cell<*const u8>,
}

impl Heap {
    pub const fn empty() -> Self {
        Heap {
            free: LinkedList::new(),
            size: Cell::new(0),
            end: Cell::new(ptr::null()),
        }
    }

    pub fn init_from_slice(&self, memory: &'static mut [u8]) {
        // Note(unsafe): Size is checked to be large enough.
        unsafe {
            let size = memory.len();
            assert!(size >= MIN_FREE_SIZE);

            self.insert_free(NonNull::new_unchecked(memory as *mut _));
            self.size.replace(size);
            self.end.replace(memory.as_ptr());
        }
    }

    ///
    /// # Safety
    /// Free block must larger or equal than `Node<Free>`.
    unsafe fn insert_free(&self, block: NonNull<[u8]>) {
        let size = block.as_ref().len();

        let ptr = block.as_ptr() as *mut Node<Free>;

        let node = Node::new(Free {
            size
        });

        ptr.write(node);

        let boxed = Box::from_raw(NonNull::new_unchecked(ptr));
        let mut cursor = self.free.cursor_front_mut();
        // Insert the new free block by ascending memory address.
        for _i in 0..self.free.len() + 1 {
            if (cursor.node() as usize) > (ptr as usize) {
                // Is this the adjecent node?
                if (cursor.node() as usize) == (ptr as usize + size) {
                    // Join right
                    (*ptr).size += (*cursor.node()).size;
                    Box::leak(cursor.take().unwrap_unchecked());
                }

                if cursor.node().is_null() {
                    // We could have moved the cursor to the end of the list
                    // when when took a node.
                    self.free.push_back(boxed);
                } else {
                    self.free.insert(
                        NonNull::new_unchecked(cursor.node()),
                        boxed,
                    );
                }
                return;
            } else if cursor.node().is_null() {
                // End of list reached.
                self.free.push_back(boxed);
                return;
            }
            cursor.move_next();
        }
        panic!("`self.free_list` contains a loop.");
    }

    #[allow(unused)]
    fn align(ptr: *mut u8, align: usize) -> *mut u8 {
        unsafe {
            ptr.add(ptr.align_offset(align))
        }
    }

    ///
    /// # Safety
    /// - Pointer must not be `null`
    /// - Range must be checked
    unsafe fn slice_ptr_from_raw(ptr: *mut u8, len: usize) -> NonNull<[u8]> {
        NonNull::new_unchecked(slice_from_raw_parts_mut(
            ptr,
            len,
        ))
    }
}

impl Allocator for Heap {
    fn alloc(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
        let mut size_requested = layout.size();
        if size_requested == 0 {
            return Err(AllocError::Other);
        }
        // Fulfill min size requirement to place a free node upon deallocation.
        if size_requested < MIN_FREE_SIZE {
            size_requested = MIN_FREE_SIZE;
        }

        // Find free block that is large enough.
        let mut cursor = self.free.cursor_front_mut();
        for i in 0..self.free.len() + 1{
            match cursor.inner() {
                None => return Err(AllocError::OutOfMemory),
                Some(node) => {
                    if node.size == size_requested {
                        break; // perfect fit
                    } else if node.size >= size_requested + MIN_FREE_SIZE {
                        break; // Free node must fit into remaing memory.
                    }
                }
            }
            cursor.move_next();
            if i == self.free.len() - 1 {
                panic!("`self.free_list` contains a loop.");
            }
        }
        let node = match cursor.take() {
            None => return Err(AllocError::Other),
            Some(n) => n,
        };

        let free_size = node.size;
        let free_ptr = Box::leak(node).as_ptr() as *mut u8;

        // Return remaining memory to the list.
        if free_size > size_requested {
            unsafe {
                // Create new free block.
                self.insert_free(Heap::slice_ptr_from_raw(
                    free_ptr.add(size_requested),
                    free_size - size_requested,
                ));
            }
        }

        unsafe {
            // We return the requested size, if there was padding due to min
            // size requirements we will recalculate it at deallocation.
            Ok(Heap::slice_ptr_from_raw(free_ptr, layout.size()))
        }
    }

    unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) {
        let mut size = layout.size();
        // The allocation process made sure that there is enough space to place
        // a free node.
        if size < MIN_FREE_SIZE {
            size = MIN_FREE_SIZE;
        }

        self.insert_free(Heap::slice_ptr_from_raw(
            ptr.as_ptr(),
            size,
        ));
    }

    fn capacity(&self) -> Byte {
        unimplemented!()
    }

    fn usage(&self) -> Byte {
        unimplemented!()
    }
}

unsafe impl Sync for Heap {}


#[cfg(all(test, not(target_os = "none")))]
mod tests {
    use super::*;

    #[test]
    fn only_allocations() {
        static mut HEAP_BUFFER: [u8; 1000] = [0; 1000];
        static HEAP: Heap = Heap::empty();

        unsafe {
            HEAP.init_from_slice(&mut HEAP_BUFFER);
        }

        for _i in 0..10 {
            let _a = HEAP.alloc(Layout::from_size_align(100, 4).unwrap()).unwrap();
        }
    }

    #[test]
    #[should_panic]
    fn over_allocation() {
        static mut HEAP_BUFFER: [u8; 1024] = [0; 1024];
        static HEAP: Heap = Heap::empty();

        unsafe {
            HEAP.init_from_slice(&mut HEAP_BUFFER);
        }

        for _i in 0..11 {
            let _a = HEAP.alloc(Layout::from_size_align(100, 4).unwrap()).unwrap();
        }
    }

    #[test]
    fn alloc_and_dealloc() {
        static mut HEAP_BUFFER: [u8; 1050] = [0; 1050];
        static HEAP: Heap = Heap::empty();

        unsafe {
            HEAP.init_from_slice(&mut HEAP_BUFFER);
        }

        let layout = Layout::from_size_align(100, 4).unwrap();
        for _i in 0..10 {
            let mut vars: [Option<NonNull<[u8]>>; 10] = [None; 10];
            for e in vars.iter_mut() {
                *e = Some(HEAP.alloc(layout.clone()).unwrap());
            }
            for e in vars.iter_mut() {
                unsafe {
                    HEAP.dealloc(
                        NonNull::new_unchecked(e.take().unwrap().as_ptr() as *mut u8),
                        layout.clone()
                    );
                }
            }
        }

        //assert_eq!(HEAP.free_list.len(), 1); // defragmentation
    }
}