bep_lancedb/lib.rs
1use lancedb::{
2 query::{QueryBase, VectorQuery},
3 DistanceType,
4};
5use bep::{
6 embeddings::embedding::EmbeddingModel,
7 vector_store::{VectorStoreError, VectorStoreIndex},
8};
9use serde::Deserialize;
10use serde_json::Value;
11use utils::{FilterTableColumns, QueryToJson};
12
13mod utils;
14
15fn lancedb_to_bep_error(e: lancedb::Error) -> VectorStoreError {
16 VectorStoreError::DatastoreError(Box::new(e))
17}
18
19fn serde_to_bep_error(e: serde_json::Error) -> VectorStoreError {
20 VectorStoreError::JsonError(e)
21}
22
23/// Type on which vector searches can be performed for a lanceDb table.
24/// # Example
25/// ```
26/// use bep_lancedb::{LanceDbVectorIndex, SearchParams};
27/// use bep::providers::openai::{Client, TEXT_EMBEDDING_ADA_002, EmbeddingModel};
28///
29/// let openai_client = Client::from_env();
30///
31/// let table: lancedb::Table = db.create_table(""); // <-- Replace with your lancedb table here.
32/// let model: EmbeddingModel = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002); // <-- Replace with your embedding model here.
33/// let vector_store_index = LanceDbVectorIndex::new(table, model, "id", SearchParams::default()).await?;
34/// ```
35pub struct LanceDbVectorIndex<M: EmbeddingModel> {
36 /// Defines which model is used to generate embeddings for the vector store.
37 model: M,
38 /// LanceDB table containing embeddings.
39 table: lancedb::Table,
40 /// Column name in `table` that contains the id of a record.
41 id_field: String,
42 /// Vector search params that are used during vector search operations.
43 search_params: SearchParams,
44}
45
46impl<M: EmbeddingModel> LanceDbVectorIndex<M> {
47 /// Create an instance of `LanceDbVectorIndex` with an existing table and model.
48 /// Define the id field name of the table.
49 /// Define search parameters that will be used to perform vector searches on the table.
50 pub async fn new(
51 table: lancedb::Table,
52 model: M,
53 id_field: &str,
54 search_params: SearchParams,
55 ) -> Result<Self, lancedb::Error> {
56 Ok(Self {
57 table,
58 model,
59 id_field: id_field.to_string(),
60 search_params,
61 })
62 }
63
64 /// Apply the search_params to the vector query.
65 /// This is a helper function used by the methods `top_n` and `top_n_ids` of the `VectorStoreIndex` trait.
66 fn build_query(&self, mut query: VectorQuery) -> VectorQuery {
67 let SearchParams {
68 distance_type,
69 search_type,
70 nprobes,
71 refine_factor,
72 post_filter,
73 column,
74 } = self.search_params.clone();
75
76 if let Some(distance_type) = distance_type {
77 query = query.distance_type(distance_type);
78 }
79
80 if let Some(SearchType::Flat) = search_type {
81 query = query.bypass_vector_index();
82 }
83
84 if let Some(SearchType::Approximate) = search_type {
85 if let Some(nprobes) = nprobes {
86 query = query.nprobes(nprobes);
87 }
88 if let Some(refine_factor) = refine_factor {
89 query = query.refine_factor(refine_factor);
90 }
91 }
92
93 if let Some(true) = post_filter {
94 query = query.postfilter();
95 }
96
97 if let Some(column) = column {
98 query = query.column(column.as_str())
99 }
100
101 query
102 }
103}
104
105/// See [LanceDB vector search](https://lancedb.github.io/lancedb/search/) for more information.
106#[derive(Debug, Clone)]
107pub enum SearchType {
108 // Flat search, also called ENN or kNN.
109 Flat,
110 /// Approximal Nearest Neighbor search, also called ANN.
111 Approximate,
112}
113
114/// Parameters used to perform a vector search on a LanceDb table.
115/// # Example
116/// ```
117/// let search_params = bep_lancedb::SearchParams::default().distance_type(lancedb::DistanceType::Cosine);
118/// ```
119#[derive(Debug, Clone, Default)]
120pub struct SearchParams {
121 distance_type: Option<DistanceType>,
122 search_type: Option<SearchType>,
123 nprobes: Option<usize>,
124 refine_factor: Option<u32>,
125 post_filter: Option<bool>,
126 column: Option<String>,
127}
128
129impl SearchParams {
130 /// Sets the distance type of the search params.
131 /// Always set the distance_type to match the value used to train the index.
132 /// The default is DistanceType::L2.
133 pub fn distance_type(mut self, distance_type: DistanceType) -> Self {
134 self.distance_type = Some(distance_type);
135 self
136 }
137
138 /// Sets the search type of the search params.
139 /// By default, ANN will be used if there is an index on the table and kNN will be used if there is NO index on the table.
140 /// To use the mentioned defaults, do not set the search type.
141 pub fn search_type(mut self, search_type: SearchType) -> Self {
142 self.search_type = Some(search_type);
143 self
144 }
145
146 /// Sets the nprobes of the search params.
147 /// Only set this value only when the search type is ANN.
148 /// See [LanceDb ANN Search](https://lancedb.github.io/lancedb/ann_indexes/#querying-an-ann-index) for more information.
149 pub fn nprobes(mut self, nprobes: usize) -> Self {
150 self.nprobes = Some(nprobes);
151 self
152 }
153
154 /// Sets the refine factor of the search params.
155 /// Only set this value only when search type is ANN.
156 /// See [LanceDb ANN Search](https://lancedb.github.io/lancedb/ann_indexes/#querying-an-ann-index) for more information.
157 pub fn refine_factor(mut self, refine_factor: u32) -> Self {
158 self.refine_factor = Some(refine_factor);
159 self
160 }
161
162 /// Sets the post filter of the search params.
163 /// If set to true, filtering will happen after the vector search instead of before.
164 /// See [LanceDb pre/post filtering](https://lancedb.github.io/lancedb/sql/#pre-and-post-filtering) for more information.
165 pub fn post_filter(mut self, post_filter: bool) -> Self {
166 self.post_filter = Some(post_filter);
167 self
168 }
169
170 /// Sets the column of the search params.
171 /// Only set this value if there is more than one column that contains lists of floats.
172 /// If there is only one column of list of floats, this column will be chosen for the vector search automatically.
173 pub fn column(mut self, column: &str) -> Self {
174 self.column = Some(column.to_string());
175 self
176 }
177}
178
179impl<M: EmbeddingModel + Sync + Send> VectorStoreIndex for LanceDbVectorIndex<M> {
180 /// Implement the `top_n` method of the `VectorStoreIndex` trait for `LanceDbVectorIndex`.
181 /// # Example
182 /// ```
183 /// use bep_lancedb::{LanceDbVectorIndex, SearchParams};
184 /// use bep::providers::openai::{EmbeddingModel, Client, TEXT_EMBEDDING_ADA_002};
185 ///
186 /// let openai_client = Client::from_env();
187 ///
188 /// let table: lancedb::Table = db.create_table("fake_definitions"); // <-- Replace with your lancedb table here.
189 /// let model: EmbeddingModel = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002); // <-- Replace with your embedding model here.
190 /// let vector_store_index = LanceDbVectorIndex::new(table, model, "id", SearchParams::default()).await?;
191 ///
192 /// // Query the index
193 /// let result = vector_store_index
194 /// .top_n::<String>("My boss says I zindle too much, what does that mean?", 1)
195 /// .await?;
196 /// ```
197 async fn top_n<T: for<'a> Deserialize<'a> + Send>(
198 &self,
199 query: &str,
200 n: usize,
201 ) -> Result<Vec<(f64, String, T)>, VectorStoreError> {
202 let prompt_embedding = self.model.embed_text(query).await?;
203
204 let query = self
205 .table
206 .vector_search(prompt_embedding.vec.clone())
207 .map_err(lancedb_to_bep_error)?
208 .limit(n)
209 .select(lancedb::query::Select::Columns(
210 self.table
211 .schema()
212 .await
213 .map_err(lancedb_to_bep_error)?
214 .filter_embeddings(),
215 ));
216
217 self.build_query(query)
218 .execute_query()
219 .await?
220 .into_iter()
221 .enumerate()
222 .map(|(i, value)| {
223 Ok((
224 match value.get("_distance") {
225 Some(Value::Number(distance)) => distance.as_f64().unwrap_or_default(),
226 _ => 0.0,
227 },
228 match value.get(self.id_field.clone()) {
229 Some(Value::String(id)) => id.to_string(),
230 _ => format!("unknown{i}"),
231 },
232 serde_json::from_value(value).map_err(serde_to_bep_error)?,
233 ))
234 })
235 .collect()
236 }
237
238 /// Implement the `top_n_ids` method of the `VectorStoreIndex` trait for `LanceDbVectorIndex`.
239 /// # Example
240 /// ```
241 /// use bep_lancedb::{LanceDbVectorIndex, SearchParams};
242 /// use bep::providers::openai::{Client, TEXT_EMBEDDING_ADA_002, EmbeddingModel};
243 ///
244 /// let openai_client = Client::from_env();
245 ///
246 /// let table: lancedb::Table = db.create_table(""); // <-- Replace with your lancedb table here.
247 /// let model: EmbeddingModel = openai_client.embedding_model(TEXT_EMBEDDING_ADA_002); // <-- Replace with your embedding model here.
248 /// let vector_store_index = LanceDbVectorIndex::new(table, model, "id", SearchParams::default()).await?;
249 ///
250 /// // Query the index
251 /// let result = vector_store_index
252 /// .top_n_ids("My boss says I zindle too much, what does that mean?", 1)
253 /// .await?;
254 /// ```
255 async fn top_n_ids(
256 &self,
257 query: &str,
258 n: usize,
259 ) -> Result<Vec<(f64, String)>, VectorStoreError> {
260 let prompt_embedding = self.model.embed_text(query).await?;
261
262 let query = self
263 .table
264 .query()
265 .select(lancedb::query::Select::Columns(vec![self.id_field.clone()]))
266 .nearest_to(prompt_embedding.vec.clone())
267 .map_err(lancedb_to_bep_error)?
268 .limit(n);
269
270 self.build_query(query)
271 .execute_query()
272 .await?
273 .into_iter()
274 .map(|value| {
275 Ok((
276 match value.get("distance") {
277 Some(Value::Number(distance)) => distance.as_f64().unwrap_or_default(),
278 _ => 0.0,
279 },
280 match value.get(self.id_field.clone()) {
281 Some(Value::String(id)) => id.to_string(),
282 _ => "".to_string(),
283 },
284 ))
285 })
286 .collect()
287 }
288}