Expand description
Lightweight benchmarking toolkit focused on practical performance analysis and report generation.
Β§benchkit
Practical, Documentation-First Benchmarking for Rust.
benchkit is a lightweight toolkit for performance analysis, born from the hard-learned lessons of optimizing high-performance libraries. It rejects rigid, all-or-nothing frameworks in favor of flexible, composable tools that integrate seamlessly into your existing workflow.
π― NEW TO benchkit? Start with
usage.md- Mandatory standards and requirements from production systems.
Β§The Benchmarking Dilemma
In Rust, developers often face a frustrating choice:
- The Heavy Framework (
criterion): Statistically powerful, but forces a rigid structure (benches/), complex setup, and produces reports that are difficult to integrate into your projectβs documentation. You must adapt your project to the framework. - The Manual Approach (
std::time): Simple to start, but statistically naive. It leads to boilerplate, inconsistent measurements, and conclusions that are easily skewed by system noise.
benchkit offers a third way.
π Important: For production use and development contributions, see
usage.md- mandatory standards with proven patterns, requirements, and compliance standards from production systems.
Β§A Toolkit, Not a Framework
This is the core philosophy of benchkit. It doesnβt impose a workflow; it provides a set of professional, composable tools that you can use however you see fit.
- β Integrate Anywhere: Write benchmarks in your test files, examples, or binaries. No required directory structure.
- β Documentation-First: Treat performance reports as a first-class part of your documentation, with tools to automatically keep them in sync with your code.
- β Practical Focus: Surface the key metrics needed for optimization decisions, hiding deep statistical complexity until you ask for it.
- β Zero Setup: Start measuring performance in minutes with a simple, intuitive API.
Β§π Quick Start: Compare, Analyze, and Document
π First time? Review usage.md for mandatory compliance standards and development requirements.
This example demonstrates the core benchkit workflow: comparing two algorithms and automatically updating a performance section in your readme.md.
1. Add to dev-dependencies in Cargo.toml:
[dev-dependencies]
benchkit = { version = "0.8.0", features = [ "full" ] }2. Create a benchmark in your benches directory:
// In benches/performance_demo.rs
#![ cfg( feature = "enabled" ) ]
use benchkit::prelude::*;
fn generate_data( size : usize ) -> Vec< u32 >
{
( 0..size ).map( | x | x as u32 ).collect()
}
#[ test ]
fn update_readme_performance_docs()
{
let mut comparison = ComparativeAnalysis::new( "Sorting Algorithms" );
let data = generate_data( 1000 );
// Benchmark the first algorithm
comparison = comparison.algorithm
(
"std_stable_sort",
{
let mut d = data.clone();
move ||
{
d.sort();
}
}
);
// Benchmark the second algorithm
comparison = comparison.algorithm
(
"std_unstable_sort",
{
let mut d = data.clone();
move ||
{
d.sort_unstable();
}
}
);
// Run the comparison and update readme.md
let report = comparison.run();
let markdown = report.to_markdown();
let updater = MarkdownUpdater::new( "readme.md", "Benchmark Results" ).unwrap();
updater.update_section( &markdown ).unwrap();
}3. Run your benchmark and watch readme.md update automatically:
cargo run --bin performance_demo --features enabled Β§π§° Whatβs in the Toolkit?
benchkit provides a suite of composable tools. Use only what you need.
Β§π Enhanced Features
π₯ NEW: Comprehensive Regression Analysis System
Advanced performance regression detection with statistical analysis and trend identification.
use benchkit::prelude::*;
use std::collections::HashMap;
use std::time::{ Duration, SystemTime };
fn regression_analysis_example() -> Result< (), Box< dyn std::error::Error > > {
// Current benchmark results
let mut current_results = HashMap::new();
let current_times = vec![ Duration::from_micros( 85 ), Duration::from_micros( 88 ), Duration::from_micros( 82 ) ];
current_results.insert( "fast_sort".to_string(), BenchmarkResult::new( "fast_sort", current_times ) );
// Historical baseline data
let mut baseline_data = HashMap::new();
let baseline_times = vec![ Duration::from_micros( 110 ), Duration::from_micros( 115 ), Duration::from_micros( 108 ) ];
baseline_data.insert( "fast_sort".to_string(), BenchmarkResult::new( "fast_sort", baseline_times ) );
let historical = HistoricalResults::new().with_baseline( baseline_data );
// Configure regression analyzer
let analyzer = RegressionAnalyzer::new()
.with_baseline_strategy( BaselineStrategy::FixedBaseline )
.with_significance_threshold( 0.05 ) // 5% significance level
.with_trend_window( 5 );
// Perform regression analysis
let regression_report = analyzer.analyze( ¤t_results, &historical );
// Check results
if regression_report.has_significant_changes() {
println!( "π Significant performance changes detected!" );
if let Some( trend ) = regression_report.get_trend_for( "fast_sort" ) {
match trend {
PerformanceTrend::Improving => println!( "π’ Performance improved!" ),
PerformanceTrend::Degrading => println!( "π΄ Performance regression detected!" ),
PerformanceTrend::Stable => println!( "π‘ Performance remains stable" ),
}
}
// Generate professional markdown report
let markdown_report = regression_report.format_markdown();
println!( "{}", markdown_report );
}
Ok(())
}Key Features:
- Three Baseline Strategies: Fixed baseline, rolling average, and previous run comparison
- Statistical Significance: Configurable thresholds with proper statistical testing
- Trend Detection: Automatic identification of improving, degrading, or stable performance
- Professional Reports: Publication-quality markdown with statistical analysis
- CI/CD Integration: Automated regression detection for deployment pipelines
- Historical Data Management: Long-term performance tracking with quality validation
Use Cases:
- Automated performance regression detection in CI/CD pipelines
- Long-term performance monitoring and trend analysis
- Code optimization validation with statistical confidence
- Production deployment gates with zero-regression tolerance
- Performance documentation with automated updates
Safe Update Chain Pattern - Atomic Documentation Updates
Coordinate multiple markdown section updates atomically - either all succeed or none are modified.
use benchkit::prelude::*;
fn update_markdown_atomically() -> Result< (), Box< dyn std::error::Error > > {
let performance_markdown = "## Performance Results\n\nFast!";
let memory_markdown = "## Memory Usage\n\nLow!";
let cpu_markdown = "## CPU Usage\n\nOptimal!";
// Update multiple sections atomically
let chain = MarkdownUpdateChain::new("readme.md")?
.add_section("Performance Benchmarks", performance_markdown)
.add_section("Memory Analysis", memory_markdown)
.add_section("CPU Profiling", cpu_markdown);
// Validate all sections before any updates
let conflicts = chain.check_all_conflicts()?;
if !conflicts.is_empty() {
return Err(format!("Section conflicts detected: {:?}", conflicts).into());
}
// Atomic update - either all succeed or all fail
chain.execute()?;
Ok(())
}Key Features:
- Atomic Operations: Either all sections update successfully or none are modified
- Conflict Detection: Validates all sections exist and are unambiguous before any changes
- Automatic Rollback: Failed operations restore original file state
- Reduced I/O: Single read and write operation instead of multiple file accesses
- Error Recovery: Comprehensive error handling with detailed diagnostics
Use Cases:
- Multi-section benchmark reports that must stay synchronized
- CI/CD pipelines requiring consistent documentation updates
- Coordinated updates across large documentation projects
- Production deployments where partial updates would be problematic
Advanced Example:
use benchkit::prelude::*;
fn complex_update_example() -> Result< (), Box< dyn std::error::Error > > {
let performance_report = "Performance analysis results";
let memory_report = "Memory usage analysis";
let comparison_report = "Algorithm comparison data";
let validation_report = "Quality assessment report";
// Complex coordinated update across multiple report types
let chain = MarkdownUpdateChain::new("PROJECT_BENCHMARKS.md")?
.add_section("Performance Analysis", performance_report)
.add_section("Memory Usage Analysis", memory_report)
.add_section("Algorithm Comparison", comparison_report)
.add_section("Quality Assessment", validation_report);
// Validate everything before committing any changes
match chain.check_all_conflicts() {
Ok(conflicts) if conflicts.is_empty() => {
println!("β
All {} sections validated", chain.len());
chain.execute()?;
},
Ok(conflicts) => {
eprintln!("β οΈ Conflicts: {:?}", conflicts);
// Handle conflicts or use more specific section names
},
Err(e) => eprintln!("β Validation failed: {}", e),
}
Ok(())
}Professional Report Templates - Research-Grade Documentation
Generate standardized, publication-quality reports with full statistical analysis and customizable sections.
use benchkit::prelude::*;
use std::collections::HashMap;
fn generate_reports() -> Result< (), Box< dyn std::error::Error > > {
let results = HashMap::new();
let comparison_results = HashMap::new();
// Comprehensive performance analysis
let performance_template = PerformanceReport::new()
.title("Algorithm Performance Analysis")
.add_context("Comparing sequential vs parallel processing approaches")
.include_statistical_analysis(true)
.include_regression_analysis(true)
.add_custom_section(CustomSection::new(
"Implementation Notes",
"Detailed implementation considerations and optimizations applied"
));
let performance_report = performance_template.generate(&results)?;
// A/B testing comparison with statistical significance
let comparison_template = ComparisonReport::new()
.title("Sequential vs Parallel Processing Comparison")
.baseline("Sequential Processing")
.candidate("Parallel Processing")
.significance_threshold(0.01) // 1% statistical significance
.practical_significance_threshold(0.05); // 5% practical significance
let comparison_report = comparison_template.generate(&comparison_results)?;
Ok(())
}Performance Report Features:
- Executive Summary: Key metrics and performance indicators
- Statistical Analysis: Confidence intervals, coefficient of variation, reliability assessment
- Performance Tables: Sorted results with throughput, latency, and quality indicators
- Custom Sections: Domain-specific analysis and recommendations
- Professional Formatting: Publication-ready markdown with proper statistical notation
Comparison Report Features:
- Significance Testing: Both statistical and practical significance analysis
- Confidence Intervals: 95% CI analysis with overlap detection
- Performance Ratios: Clear improvement/regression percentages
- Reliability Assessment: Quality validation for both baseline and candidate
- Decision Support: Clear recommendations based on statistical analysis
Advanced Template Composition:
use benchkit::prelude::*;
fn create_enterprise_template() -> PerformanceReport {
// Create domain-specific template with multiple custom sections
let enterprise_template = PerformanceReport::new()
.title("Enterprise Algorithm Performance Audit")
.add_context("Monthly performance review for production trading systems")
.include_statistical_analysis(true)
.add_custom_section(CustomSection::new(
"Risk Assessment",
r#"### Performance Risk Analysis
| Algorithm | Latency Risk | Throughput Risk | Stability | Overall |
|-----------|-------------|-----------------|-----------|----------|
| Current | π’ Low | π‘ Medium | π’ Low | π‘ Medium |
| Proposed | π’ Low | π’ Low | π’ Low | π’ Low |"#
))
.add_custom_section(CustomSection::new(
"Business Impact",
r#"### Projected Business Impact
- **Latency Improvement**: 15% faster response times
- **Throughput Increase**: +2,000 req/sec capacity
- **Cost Reduction**: -$50K/month in infrastructure
- **SLA Compliance**: 99.9% β 99.99% uptime"#
));
enterprise_template
}Benchmark Validation Framework - Quality Assurance
Comprehensive quality assessment system with configurable criteria and automatic reliability analysis.
use benchkit::prelude::*;
use std::collections::HashMap;
fn validate_benchmark_results() {
let results = HashMap::new();
// Configure validator for your specific requirements
let validator = BenchmarkValidator::new()
.min_samples(20) // Require 20+ measurements
.max_coefficient_variation(0.10) // 10% maximum variability
.require_warmup(true) // Detect warm-up periods
.max_time_ratio(3.0) // 3x max/min ratio
.min_measurement_time(Duration::from_micros(50)); // 50ΞΌs minimum duration
// Validate all results with detailed analysis
let validated_results = ValidatedResults::new(results, validator);
println!("Reliability: {:.1}%", validated_results.reliability_rate());
// Get detailed quality warnings
if let Some(warnings) = validated_results.reliability_warnings() {
println!("β οΈ Quality Issues Detected:");
for warning in warnings {
println!(" - {}", warning);
}
}
// Work with only statistically reliable results
let reliable_only = validated_results.reliable_results();
println!("Using {}/{} reliable benchmarks for analysis",
reliable_only.len(), validated_results.results.len());
}Validation Criteria:
- Sample Size: Ensure sufficient measurements for statistical power
- Variability: Detect high coefficient of variation indicating noise
- Measurement Duration: Flag measurements that may be timing-resolution limited
- Performance Range: Identify outliers and wide performance distributions
- Warm-up Detection: Verify proper system warm-up for consistent results
Warning Types:
InsufficientSamples: Too few measurements for reliable statisticsHighVariability: Coefficient of variation exceeds thresholdShortMeasurementTime: Measurements may be affected by timer resolutionWidePerformanceRange: Large ratio between fastest/slowest measurementsNoWarmup: Missing warm-up period may indicate measurement issues
Domain-Specific Validation:
use benchkit::prelude::*;
use std::collections::HashMap;
fn domain_specific_validation() {
let results = HashMap::new();
// Real-time systems validation (very strict)
let realtime_validator = BenchmarkValidator::new()
.min_samples(50)
.max_coefficient_variation(0.02) // 2% maximum
.max_time_ratio(1.5); // Very tight timing
// Interactive systems validation (balanced)
let interactive_validator = BenchmarkValidator::new()
.min_samples(15)
.max_coefficient_variation(0.15) // 15% acceptable
.require_warmup(false); // Interactive may not show warmup
// Batch processing validation (lenient)
let batch_validator = BenchmarkValidator::new()
.min_samples(10)
.max_coefficient_variation(0.25) // 25% acceptable
.max_time_ratio(5.0); // Allow more variation
// Apply appropriate validator for your domain
let domain_results = ValidatedResults::new(results, realtime_validator);
}Quality Reporting:
use benchkit::prelude::*;
use std::collections::HashMap;
fn generate_validation_report() {
let results = HashMap::new();
let validator = BenchmarkValidator::new();
// Generate comprehensive validation report
let validation_report = validator.generate_validation_report(&results);
// Validation report includes:
// - Summary statistics and reliability rates
// - Detailed warnings with improvement recommendations
// - Validation criteria documentation
// - Quality assessment for each benchmark
// - Actionable steps to improve measurement quality
println!("{}", validation_report);
}Complete Integration Examples
Comprehensive examples demonstrating real-world usage patterns and advanced integration scenarios.
Development Workflow Integration:
use benchkit::prelude::*;
// Complete development cycle: benchmark β validate β document β commit
fn development_workflow() -> Result< (), Box< dyn std::error::Error > > {
// Mock implementations for doc test
fn quicksort_implementation() {}
fn mergesort_implementation() {}
// 1. Run benchmarks
let mut suite = BenchmarkSuite::new("Algorithm Performance");
suite.benchmark("quicksort", || quicksort_implementation());
suite.benchmark("mergesort", || mergesort_implementation());
let results = suite.run_all();
// 2. Validate quality
let validator = BenchmarkValidator::new()
.min_samples(15)
.max_coefficient_variation(0.15);
let validated_results = ValidatedResults::new(results.results, validator);
if validated_results.reliability_rate() < 80.0 {
return Err("Benchmark quality insufficient for analysis".into());
}
// 3. Generate professional report
let template = PerformanceReport::new()
.title("Algorithm Performance Analysis")
.include_statistical_analysis(true)
.add_custom_section(CustomSection::new(
"Development Notes",
"Analysis conducted during algorithm optimization phase"
));
let report = template.generate(&validated_results.results)?;
// 4. Update documentation atomically
let chain = MarkdownUpdateChain::new("README.md")?
.add_section("Performance Analysis", report)
.add_section("Quality Assessment", validated_results.validation_report());
chain.execute()?;
println!("β
Development documentation updated successfully");
Ok(())
}CI/CD Pipeline Integration:
use benchkit::prelude::*;
use std::collections::HashMap;
// Automated performance regression detection
fn cicd_performance_check(baseline_results: HashMap<String, BenchmarkResult>,
pr_results: HashMap<String, BenchmarkResult>) -> Result< bool, Box< dyn std::error::Error > > {
// Validate both result sets
let validator = BenchmarkValidator::new().require_warmup(false);
let baseline_validated = ValidatedResults::new(baseline_results.clone(), validator.clone());
let pr_validated = ValidatedResults::new(pr_results.clone(), validator);
// Require high quality for regression analysis
if baseline_validated.reliability_rate() < 90.0 || pr_validated.reliability_rate() < 90.0 {
println!("β BLOCK: Insufficient benchmark quality for regression analysis");
return Ok(false);
}
// Compare performance for regression detection
let comparison = ComparisonReport::new()
.title("Performance Regression Analysis")
.baseline("baseline_version")
.candidate("pr_version")
.practical_significance_threshold(0.05); // 5% regression threshold
// Create combined results for comparison
let mut combined = HashMap::new();
combined.insert("baseline_version".to_string(),
baseline_results.values().next().unwrap().clone());
combined.insert("pr_version".to_string(),
pr_results.values().next().unwrap().clone());
let regression_report = comparison.generate(&combined)?;
// Check for regressions
let has_regression = regression_report.contains("slower");
if has_regression {
println!("β BLOCK: Performance regression detected");
// Save detailed report for review
std::fs::write("regression_analysis.md", regression_report)?;
Ok(false)
} else {
println!("β
ALLOW: No performance regressions detected");
Ok(true)
}
}Multi-Project Coordination:
use benchkit::prelude::*;
use std::collections::HashMap;
// Coordinate benchmark updates across multiple related projects
fn coordinate_multi_project_benchmarks() -> Result< (), Box< dyn std::error::Error > > {
let projects = vec!["web-api", "batch-processor", "realtime-analyzer"];
let mut all_results = HashMap::new();
// Collect results from all projects
for project in &projects {
let project_results = run_project_benchmarks(project)?;
all_results.extend(project_results);
}
// Cross-project validation with lenient criteria
let validator = BenchmarkValidator::new()
.max_coefficient_variation(0.25) // Different environments have more noise
.require_warmup(false);
let cross_project_validated = ValidatedResults::new(all_results.clone(), validator);
// Generate consolidated impact analysis
let impact_template = PerformanceReport::new()
.title("Cross-Project Performance Impact Analysis")
.add_context("Shared library upgrade impact across all dependent projects")
.include_statistical_analysis(true)
.add_custom_section(CustomSection::new(
"Project Impact Summary",
format_project_impact_analysis(&projects, &all_results)
));
let impact_report = impact_template.generate(&all_results)?;
// Update shared documentation
let shared_chain = MarkdownUpdateChain::new("SHARED_LIBRARY_IMPACT.md")?
.add_section("Current Impact Analysis", &impact_report)
.add_section("Quality Assessment", &cross_project_validated.validation_report());
shared_chain.execute()?;
// Notify project maintainers
notify_project_teams(&projects, &impact_report)?;
Ok(())
}
// Helper functions for the example
fn run_project_benchmarks(_project: &str) -> Result< HashMap< String, BenchmarkResult >, Box< dyn std::error::Error > > {
// Mock implementation for doc test
Ok(HashMap::new())
}
fn format_project_impact_analysis(_projects: &[&str], _results: &HashMap< String, BenchmarkResult >) -> String {
// Mock implementation for doc test
"Impact analysis summary".to_string()
}
fn notify_project_teams(_projects: &[&str], _report: &str) -> Result< (), Box< dyn std::error::Error > > {
// Mock implementation for doc test
Ok(())
}Measure: Core Timing and Profiling
At its heart, benchkit provides simple and accurate measurement primitives.
use benchkit::prelude::*;
// A robust measurement with multiple iterations and statistical cleanup.
let result = bench_function
(
"summation_1000",
||
{
( 0..1000 ).fold( 0, | acc, x | acc + x )
}
);
println!( "Avg time: {:.2?}", result.mean_time() );
println!( "Throughput: {:.0} ops/sec", result.operations_per_second() );
// Track memory usage patterns alongside timing.
let memory_benchmark = MemoryBenchmark::new( "allocation_test" );
let ( timing, memory_stats ) = memory_benchmark.run_with_tracking
(
10,
||
{
let data = vec![ 0u8; 1024 ];
memory_benchmark.tracker.record_allocation( 1024 );
std::hint::black_box( data );
}
);
println!( "Peak memory usage: {} bytes", memory_stats.peak_usage );Analyze: Find Insights and Regressions
Turn raw numbers into actionable insights.
use benchkit::prelude::*;
// Compare multiple implementations to find the best one.
let report = ComparativeAnalysis::new( "Hashing" )
.algorithm( "fnv", || { /* ... */ } )
.algorithm( "siphash", || { /* ... */ } )
.run();
if let Some( ( fastest_name, _ ) ) = report.fastest()
{
println!( "Fastest algorithm: {}", fastest_name );
}
// Example benchmark results
let result_a = bench_function( "test_a", || { /* ... */ } );
let result_b = bench_function( "test_b", || { /* ... */ } );
// Compare two benchmark results
let comparison = result_a.compare( &result_b );
if comparison.is_improvement()
{
println!( "Performance improved!" );
}Generate: Create Realistic Test Data
Stop writing boilerplate to create test data. benchkit provides generators for common scenarios.
use benchkit::prelude::*;
// Generate a comma-separated list of 100 items.
let list_data = generate_list_data( DataSize::Medium );
// Generate realistic unilang command strings for parser benchmarking.
let command_generator = DataGenerator::new()
.complexity( DataComplexity::Complex );
let commands = command_generator.generate_unilang_commands( 10 );
// Create reproducible data with a specific seed.
let mut seeded_gen = SeededGenerator::new( 42 );
let random_data = seeded_gen.random_string( 1024 );Document: Automate Your Reports
The βdocumentation-firstβ philosophy is enabled by powerful report generation and file updating tools.
use benchkit::prelude::*;
fn main() -> Result< (), Box< dyn std::error::Error > >
{
let mut suite = BenchmarkSuite::new( "api_performance" );
suite.benchmark( "get_user", || { /* ... */ } );
suite.benchmark( "create_user", || { /* ... */ } );
let results = suite.run_analysis();
// Generate a markdown report from the results.
let markdown_report = results.generate_markdown_report().generate();
// Automatically update the "## Performance" section of a file.
let updater = MarkdownUpdater::new( "readme.md", "Performance" )?;
updater.update_section( &markdown_report )?;
Ok( () )
}Β§The benchkit Workflow
benchkit is designed to make performance analysis a natural part of your development cycle.
[ 1. Write Code ] -> [ 2. Add Benchmark in `benches/` ] -> [ 3. Run `cargo run --bin` ]
^ |
| v
[ 5. Commit Code + Perf Docs ] <- [ 4. Auto-Update `benchmark_results.md` ] <- [ Analyze Results ]Β§π MANDATORY benches/ Directory - NO ALTERNATIVES
ABSOLUTE REQUIREMENT: ALL benchmark-related files MUST be in the benches/ directory. This is NON-NEGOTIABLE for proper benchkit functionality:
- π« NEVER in
tests/: Benchmarks are NOT tests and MUST NOT be mixed with unit tests - π« NEVER in
examples/: Examples are demonstrations, NOT performance measurements - π« NEVER in
src/bin/: Source binaries are NOT benchmarks - β
ONLY in
benches/: This is the EXCLUSIVE location for ALL benchmark content
Why This Requirement Exists:
- β‘ Cargo Requirement:
cargo benchONLY works withbenches/directory - ποΈ Ecosystem Standard: ALL professional Rust projects use
benches/EXCLUSIVELY - π§ Tool Compatibility: IDEs, CI systems, linters expect benchmarks ONLY in
benches/ - π Performance Isolation: Benchmarks require different compilation and execution than tests
Β§Why This Matters
Ecosystem Integration: The benches/ directory is the official Rust standard, ensuring compatibility with the entire Rust toolchain.
Zero Configuration: cargo bench automatically discovers and runs benchmarks in the benches/ directory without additional setup.
Community Expectations: Developers expect to find benchmarks in benches/ - this follows the principle of least surprise.
Tool Compatibility: All Rust tooling (IDEs, CI/CD, linters) is designed around the standard benches/ structure.
Β§Automatic Documentation Updates
benchkit excels at maintaining comprehensive, automatically updated documentation in your project files:
# Benchmark Results
## Algorithm Comparison
| Algorithm | Mean Time | Throughput | Relative |
|-----------|-----------|------------|----------|
| quicksort | 1.23ms | 815 ops/s | baseline |
| mergesort | 1.45ms | 689 ops/s | 1.18x |
| heapsort | 1.67ms | 599 ops/s | 1.36x |
*Last updated: 2024-01-15 14:32:18 UTC*
*Generated by benchkit v0.4.0*
## Performance Trends
- quicksort maintains consistent performance across data sizes
- mergesort shows better cache behavior on large datasets
- heapsort provides predictable O(n log n) guarantees
## Test Configuration
- Hardware: 16-core AMD Ryzen, 32GB RAM
- Rust version: 1.75.0
- Optimization: --release
- Iterations: 1000 per benchmarkThis documentation is automatically generated and updated every time you run benchmarks.
Β§Integration Examples
// β
In standard tests/ directory alongside unit tests
// tests/performance_comparison.rs
use benchkit::prelude::*;
#[test]
fn benchmark_algorithms()
{
let mut suite = BenchmarkSuite::new( "Algorithm Comparison" );
suite.benchmark( "quick_sort", ||
{
// Your quicksort implementation
});
suite.benchmark( "merge_sort", ||
{
// Your mergesort implementation
});
let results = suite.run_all();
// Automatically update readme.md with results
let updater = MarkdownUpdater::new( "readme.md", "Performance" ).unwrap();
updater.update_section( &results.generate_markdown_report().generate() ).unwrap();
}// β
In examples/ directory for demonstrations
// examples/comprehensive_benchmark.rs
use benchkit::prelude::*;
fn main()
{
let mut comprehensive = BenchmarkSuite::new( "Comprehensive Performance Analysis" );
// Add multiple benchmarks
comprehensive.benchmark( "data_processing", || { /* code */ } );
comprehensive.benchmark( "memory_operations", || { /* code */ } );
comprehensive.benchmark( "io_operations", || { /* code */ } );
let results = comprehensive.run_all();
// Update readme.md with comprehensive report
let report = results.generate_markdown_report();
let updater = MarkdownUpdater::new( "readme.md", "Performance Analysis" ).unwrap();
updater.update_section( &report.generate() ).unwrap();
println!( "Updated readme.md with latest performance results" );
}Β§π§ Feature Flag Recommendations
For optimal build performance and clean separation, put your benchmark code behind feature flags:
// β
In src/bin/ directory for dedicated benchmark executables
// src/bin/comprehensive_benchmark.rs
#[ cfg( feature = "enabled" ) ]
use benchkit::prelude::*;
#[ cfg( feature = "enabled" ) ]
fn main()
{
let mut suite = BenchmarkSuite::new( "Comprehensive Performance Suite" );
suite.benchmark( "algorithm_a", || { /* implementation */ } );
suite.benchmark( "algorithm_b", || { /* implementation */ } );
suite.benchmark( "data_structure_ops", || { /* implementation */ } );
let results = suite.run_all();
// Automatically update readme.md
let updater = MarkdownUpdater::new( "readme.md", "Latest Results" ).unwrap();
updater.update_section( &results.generate_markdown_report().generate() ).unwrap();
println!( "Benchmarks completed - readme.md updated" );
}
#[ cfg( not( feature = "enabled" ) ) ]
fn main()
{
println!( "Run with: cargo run --bin comprehensive_benchmark --features enabled" );
println!( "Results will be automatically saved to readme.md" );
}Add to your Cargo.toml:
[features]
benchmark = ["benchkit"]
[dev-dependencies]
benchkit = { version = "0.8.0", features = ["full"], optional = true }Run benchmarks selectively:
# Run only unit tests (fast)
cargo test
# Run specific benchmark binary (updates readme.md)
cargo run --bin comprehensive_benchmark --features enabled
# Run benchmarks from examples/
cargo run --example performance_demo --features enabled
# Run all binaries containing benchmarks
cargo run --bin performance_suite --features enabledThis approach keeps your regular builds fast while making comprehensive performance testing available when needed.
Β§π Comprehensive Examples
benchkit includes extensive examples demonstrating every feature and usage pattern:
Β§π― Feature-Specific Examples
-
Update Chain Comprehensive: Complete demonstration of atomic documentation updates
- Single and multi-section updates with conflict detection
- Error handling and recovery patterns
- Advanced conflict resolution strategies
- Performance optimization for bulk updates
- Full integration with validation and templates
-
Templates Comprehensive: Professional report generation in all scenarios
- Basic and fully customized Performance Report templates
- A/B testing with Comparison Report templates
- Custom sections with advanced markdown formatting
- Multiple comparison scenarios and batch processing
- Business impact analysis and risk assessment templates
- Comprehensive error handling for edge cases
-
Validation Comprehensive: Quality assurance for reliable benchmarking
- Default and custom validator configurations
- Individual warning types with detailed analysis
- Validation report generation and interpretation
- Reliable results filtering for analysis
- Domain-specific validation scenarios (research, development, production, micro)
- Full integration with templates and update chains
-
Regression Analysis Comprehensive: Complete regression analysis system demonstration
- All baseline strategies (Fixed, Rolling Average, Previous Run)
- Performance trend detection (Improving, Degrading, Stable)
- Statistical significance testing with configurable thresholds
- Professional markdown report generation with regression insights
- Real-world optimization scenarios and configuration guidance
- Full integration with PerformanceReport templates
-
Historical Data Management: Managing long-term performance data
- Incremental historical data building and TimestampedResults creation
- Data quality validation and cleanup procedures
- Performance trend analysis across multiple time windows
- Storage and serialization strategy recommendations
- Data retention and archival best practices
- Integration with RegressionAnalyzer for trend detection
Β§π§ Integration Examples
-
Integration Workflows: Real-world workflow automation
- Development cycle: benchmark β validate β document β commit
- CI/CD pipeline: regression detection β merge decision β automated reporting
- Multi-project coordination: impact analysis β consolidated reporting β team alignment
- Production monitoring: continuous tracking β alerting β dashboard updates
-
Error Handling Patterns: Robust operation under adverse conditions
- Update Chain file system errors (permissions, conflicts, recovery)
- Template generation errors (missing data, invalid parameters)
- Validation framework edge cases (malformed data, extreme variance)
- System errors (resource limits, concurrent access)
- Graceful degradation strategies with automatic fallbacks
-
Advanced Usage Patterns: Enterprise-scale benchmarking
- Domain-specific validation criteria (real-time, interactive, batch processing)
- Template composition and inheritance patterns
- Coordinated multi-document updates with consistency guarantees
- Memory-efficient large-scale processing (1000+ algorithms)
- Performance optimization techniques (caching, concurrency, incremental processing)
-
CI/CD Regression Detection: Automated performance validation in CI/CD pipelines
- Multi-environment validation (development, staging, production)
- Configurable regression thresholds and statistical significance levels
- Automated performance gate decisions with proper exit codes
- GitHub Actions compatible reporting and documentation updates
- Progressive validation pipeline with halt-on-failure
- Real-world CI/CD integration patterns and best practices
-
π¨ Cargo Bench Integration: CRITICAL - Standard
cargo benchintegration patterns- Seamless integration with Rustβs standard
cargo benchcommand - Automatic documentation updates during benchmark execution
- Standard
benches/directory structure support - Criterion compatibility layer for zero-migration adoption
- CI/CD integration with standard workflows and conventions
- Real-world project structure and configuration examples
- This is the foundation requirement for benchkit adoption
- Seamless integration with Rustβs standard
Β§π Running the Examples
# Feature-specific examples
cargo run --example update_chain_comprehensive --all-features
cargo run --example templates_comprehensive --all-features
cargo run --example validation_comprehensive --all-features
# NEW: Regression Analysis Examples
cargo run --example regression_analysis_comprehensive --all-features
cargo run --example historical_data_management --all-features
# Integration examples
cargo run --example integration_workflows --all-features
cargo run --example error_handling_patterns --all-features
cargo run --example advanced_usage_patterns --all-features
# NEW: CI/CD Integration Example
cargo run --example cicd_regression_detection --all-features
# π¨ CRITICAL: Cargo Bench Integration Example
cargo run --example cargo_bench_integration --all-features
# Original enhanced features demo
cargo run --example enhanced_features_demo --all-featuresEach example is fully documented with detailed explanations and demonstrates production-ready patterns you can adapt to your specific needs.
Β§Installation
Add benchkit to your [dev-dependencies] in Cargo.toml.
[dev-dependencies]
# For core functionality
benchkit = "0.1"
# Or enable all features for the full toolkit
benchkit = { version = "0.8.0", features = [ "full" ] }Β§π Development Guidelines & Best Practices
β οΈ IMPORTANT: Before using benchkit in production or contributing to development, strongly review the comprehensive usage.md file. This document contains essential requirements, best practices, and lessons learned from real-world performance analysis work.
The recommendations cover:
- β Core philosophy and toolkit vs framework principles
- β Technical architecture requirements and feature organization
- β Performance analysis best practices with standardized data patterns
- β Documentation integration requirements for automated reporting
- β Statistical analysis requirements for reliable measurements
π Read usage.md first - it will save you time and ensure youβre following proven patterns.
Β§Contributing
Contributions are welcome! benchkit aims to be a community-driven toolkit that solves real-world benchmarking problems.
Before contributing:
- π Read
usage.md- Contains all development requirements and design principles - Review open tasks in the
task/directory - Check our contribution guidelines
All contributions must align with the principles and requirements outlined in usage.md.
Β§License
This project is licensed under the MIT License.
Β§Performance
This section is automatically updated by benchkit when you run benchmarks.
ModulesΒ§
- analysis
- Analysis tools for benchmark results
- comparison
- Framework and algorithm comparison utilities
- data_
generation - Advanced data generation utilities for benchmarking
- diff
- Git-style diff functionality for benchmark results
- documentation
- Documentation integration and auto-update utilities
- generators
- Data generators for benchmarking
- measurement
- Core measurement and timing functionality
- memory_
tracking - Memory allocation tracking and analysis for benchmarks
- parser_
analysis - Parser-specific analysis utilities
- parser_
data_ generation - Parser-specific data generation utilities
- plotting
- Visualization and plotting utilities for benchmark results
- prelude
- Prelude module for convenient imports
- profiling
- Memory allocation and performance profiling tools
- reporting
- Report generation and markdown integration
- scaling
- Scaling analysis tools for performance testing
- statistical
- Research-grade statistical analysis for benchmark results
- suite
- Benchmark suite management
- templates
- Template system for consistent documentation formatting
- throughput
- Throughput calculation and analysis utilities
- update_
chain - Safe Update Chain Pattern for coordinated markdown section updates
- validation
- Benchmark validation and quality assessment framework
MacrosΒ§
- bench_
block - Measure a block of code (convenience macro)