1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
use crate::{NDimensional, UnConstrained, UnBounded, Bounded, SingleObjective, HIGH_D, LOW_D};

/// This is the Sphere function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Sphere_function_in_3D.pdf/page1-800px-Sphere_function_in_3D.pdf.jpg)
pub struct Sphere {}

impl NDimensional for Sphere {}
impl UnConstrained for Sphere {}
impl UnBounded for Sphere {}

impl SingleObjective for Sphere {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let mut f = 0f64;
        for i in 0..x.len() {
            f -= x[i] * x[i];
        }
        f
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod sphere_tests {
    use super::{Sphere as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Rastrigin function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Rastrigin_function.png/800px-Rastrigin_function.png)
pub struct Rastrigin {}

impl NDimensional for Rastrigin {}
impl UnConstrained for Rastrigin {}

impl Bounded for Rastrigin {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.12, 5.12);
}

impl SingleObjective for Rastrigin {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let a = 10.0;
        let n = x.len() ;
        let mut fx = a*(n as f64);

        for i in 0..n {
            fx += x[i].powi(2) - a*(2.0*x[i]*std::f64::consts::PI).cos();
        }
        fx
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod rastrigin_tests {
    use super::{Rastrigin as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Rosenbrock function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Rosenbrock%27s_function_in_3D.pdf/page1-800px-Rosenbrock%27s_function_in_3D.pdf.jpg)
pub struct Rosenbrock {}

impl NDimensional for Rosenbrock {}
impl UnConstrained for Rosenbrock {}

impl Bounded for Rosenbrock {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 10.0);
}

impl SingleObjective for Rosenbrock {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n = x.len();
        let mut fx = 0.0;
        for i in 0..(n-1) {
            fx += 100.0*(x[i+1] - x[i].powi(2)).powi(2) + (1.0 - x[i]).powi(2);
        }
        fx
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![1.0; n]
    }
}

#[cfg(test)]
mod rosenbrock_tests {
    use super::{Rosenbrock as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Ackley function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Ackley%27s_function.pdf/page1-800px-Ackley%27s_function.pdf.jpg)
pub struct Ackley {}

impl NDimensional for Ackley {}
impl UnConstrained for Ackley {}

impl Bounded for Ackley {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 5.0);
}

impl SingleObjective for Ackley {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut fx = 0.0;
        let mut square_sum = 0.0;
        let mut cosine_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            cosine_sum += (2.0*std::f64::consts::PI*x[i]).cos();
        }
        fx += -20.0*(-0.2*(0.5*square_sum).sqrt()).exp();
        fx -= (cosine_sum/(n as f64)).exp();
        fx + std::f64::consts::E + 20.0
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod ackley_tests {
    use super::{Ackley as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Matyas function.
///
/// The function is borrowed from [here](https://en.wikipedia.org/wiki/Test_functions_for_optimization).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](https://upload.wikimedia.org/wikipedia/commons/thumb/6/63/Matyas_function.pdf/page1-800px-Matyas_function.pdf.jpg)
pub struct Matyas {}

impl NDimensional for Matyas {}
impl UnConstrained for Matyas {}

impl Bounded for Matyas {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-10.0, 10.0);
}

impl SingleObjective for Matyas {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        let mut prod = 1.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            prod *= x[i];
        }
        0.26*square_sum - 0.48*prod
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod matyas_tests {
    use super::{Matyas as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Griewank function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/griewankfcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/griewankfcn_10_0.png)
pub struct Griewank {}

impl NDimensional for Griewank {}
impl UnConstrained for Griewank {}

impl Bounded for Griewank {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-600.0, 600.0);
}

impl SingleObjective for Griewank {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut cosine_prod = 1.0;
        let mut square_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            cosine_prod *= (x[i]/((i+1) as f64).sqrt()).cos();
        }
        1.0 + square_sum/4000.0 - cosine_prod
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod griewank_tests {
    use super::{Griewank as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Ridge function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/ridgefcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/ridgefcn.png)
pub struct Ridge {}

impl NDimensional for Ridge {}
impl UnConstrained for Ridge {}

impl Bounded for Ridge {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 5.0);
}

impl SingleObjective for Ridge {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = -5.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let d = 1.0;
        let alpha = 0.0;
        let mut square_sum = 0.0;
        for i in 1..n {
            square_sum += x[i].powi(2);
        }
        -1.0 + x[0] + d * square_sum.powf(alpha)
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        let mut v = vec![0.0; n];
        v[0] = -5.0;
        v
    }
}

#[cfg(test)]
mod ridge_tests {
    use super::{Ridge as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Zakharov function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/zakharov.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/zakharovfcn.png)
pub struct Zakharov {}

impl NDimensional for Zakharov {}
impl UnConstrained for Zakharov {}

impl Bounded for Zakharov {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-5.0, 10.0);
}

impl SingleObjective for Zakharov {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        let mut sum_ixi = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
            sum_ixi += 0.5*x[i]*(i as f64);
        }
        square_sum + sum_ixi.powi(2) + sum_ixi.powi(4)
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod zakharov_tests {
    use super::{Zakharov as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}

/// This is the Salomon function.
///
/// The function is borrowed from [here](http://benchmarkfcns.xyz/benchmarkfcns/salomonfcn.html).
/// Although the function accepts a vector with an arbitrary number of inputs, this is what it looks
/// like in 2D:
///
/// ![](http://benchmarkfcns.xyz/benchmarkfcns/plots/salomonfcn.png)
pub struct Salomon {}

impl NDimensional for Salomon {}
impl UnConstrained for Salomon {}

impl Bounded for Salomon {
    /// The bounds of the canonical sphere optimization problem are infinite.
    const BOUNDS: (f64, f64) = (-100.0, 100.0);
}

impl SingleObjective for Salomon {
    /// The global minimum is constant and zero
    const MINIMUM: f64 = 0.0;

    /// Function for evaluating
    fn f(x: Vec<f64>) -> f64 {
        let n=x.len();
        let mut square_sum = 0.0;
        for i in 0..n {
            square_sum += x[i].powi(2);
        }
        1.0 - (2.0*std::f64::consts::PI*square_sum.sqrt()).cos() + 0.1*square_sum.sqrt()
    }

    /// This function returns the minimizer (argument that will return the global minimum
    fn minimizer(n: usize) -> Vec<f64> {
        vec![0.0; n]
    }
}

#[cfg(test)]
mod salomon_tests {
    use super::{Salomon as F, SingleObjective, LOW_D, HIGH_D};

    #[test]
    fn low_d() {
        F::check_minimizer(LOW_D)
    }

    #[test]
    fn high_d() {
        F::check_minimizer(HIGH_D)
    }
}