Crate bellperson
source ·Expand description
bellperson
is a crate for building zk-SNARK circuits. It provides circuit
traits and and primitive structures, as well as basic gadget implementations
such as booleans and number abstractions.
Example circuit
Say we want to write a circuit that proves we know the preimage to some hash computed using SHA-256d (calling SHA-256 twice). The preimage must have a fixed length known in advance (because the circuit parameters will depend on it), but can otherwise have any value. We take the following strategy:
- Witness each bit of the preimage.
- Compute
hash = SHA-256d(preimage)
inside the circuit. - Expose
hash
as a public input using multiscalar packing.
use bellperson::{
gadgets::{
boolean::{AllocatedBit, Boolean},
multipack,
sha256::sha256,
},
groth16, Circuit, ConstraintSystem, SynthesisError,
};
use blstrs::Bls12;
use ff::PrimeField;
use pairing::Engine;
use rand::rngs::OsRng;
use sha2::{Digest, Sha256};
/// Our own SHA-256d gadget. Input and output are in little-endian bit order.
fn sha256d<Scalar: PrimeField, CS: ConstraintSystem<Scalar>>(
mut cs: CS,
data: &[Boolean],
) -> Result<Vec<Boolean>, SynthesisError> {
// Flip endianness of each input byte
let input: Vec<_> = data
.chunks(8)
.map(|c| c.iter().rev())
.flatten()
.cloned()
.collect();
let mid = sha256(cs.namespace(|| "SHA-256(input)"), &input)?;
let res = sha256(cs.namespace(|| "SHA-256(mid)"), &mid)?;
// Flip endianness of each output byte
Ok(res
.chunks(8)
.map(|c| c.iter().rev())
.flatten()
.cloned()
.collect())
}
struct MyCircuit {
/// The input to SHA-256d we are proving that we know. Set to `None` when we
/// are verifying a proof (and do not have the witness data).
preimage: Option<[u8; 80]>,
}
impl<Scalar: PrimeField> Circuit<Scalar> for MyCircuit {
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
// Compute the values for the bits of the preimage. If we are verifying a proof,
// we still need to create the same constraints, so we return an equivalent-size
// Vec of None (indicating that the value of each bit is unknown).
let bit_values = if let Some(preimage) = self.preimage {
preimage
.iter()
.map(|byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8))
.flatten()
.map(|b| Some(b))
.collect()
} else {
vec![None; 80 * 8]
};
assert_eq!(bit_values.len(), 80 * 8);
// Witness the bits of the preimage.
let preimage_bits = bit_values
.into_iter()
.enumerate()
// Allocate each bit.
.map(|(i, b)| {
AllocatedBit::alloc(cs.namespace(|| format!("preimage bit {}", i)), b)
})
// Convert the AllocatedBits into Booleans (required for the sha256 gadget).
.map(|b| b.map(Boolean::from))
.collect::<Result<Vec<_>, _>>()?;
// Compute hash = SHA-256d(preimage).
let hash = sha256d(cs.namespace(|| "SHA-256d(preimage)"), &preimage_bits)?;
// Expose the vector of 32 boolean variables as compact public inputs.
multipack::pack_into_inputs(cs.namespace(|| "pack hash"), &hash)
}
}
// Create parameters for our circuit. In a production deployment these would
// be generated securely using a multiparty computation.
let params = {
let c = MyCircuit { preimage: None };
groth16::generate_random_parameters::<Bls12, _, _>(c, &mut OsRng).unwrap()
};
// Prepare the verification key (for proof verification).
let pvk = groth16::prepare_verifying_key(¶ms.vk);
// Pick a preimage and compute its hash.
let preimage = [42; 80];
let hash = Sha256::digest(&Sha256::digest(&preimage));
// Create an instance of our circuit (with the preimage as a witness).
let c = MyCircuit {
preimage: Some(preimage),
};
// Create a Groth16 proof with our parameters.
let proof = groth16::create_random_proof(c, ¶ms, &mut OsRng).unwrap();
// Pack the hash as inputs for proof verification.
let hash_bits = multipack::bytes_to_bits_le(&hash);
let inputs = multipack::compute_multipacking::<<Bls12 as Engine>::Fr>(&hash_bits);
// Check the proof!
assert!(groth16::verify_proof(&pvk, &proof, &inputs).unwrap());
Roadmap
bellperson
is being refactored into a generic proving library. Currently it
is pairing-specific, and different types of proving systems need to be
implemented as sub-modules. After the refactor, bellperson
will be generic
using the ff
and group
crates, while specific proving systems will
be separate crates that pull in the dependencies they require.
Modules
- This module contains an
EvaluationDomain
abstraction for performing various kinds of polynomial arithmetic on top of the scalar field. - Self-contained sub-circuit implementations for various primitives.
- The Groth16 proving system.
Structs
- This represents a linear combination of some variables, with coefficients in the scalar field of a pairing-friendly elliptic curve group.
- This is a “namespaced” constraint system which borrows a constraint system (pushing a namespace context) and, when dropped, pops out of the namespace context.
- Represents a variable in our constraint system.
Enums
- Represents the index of either an input variable or auxiliary variable.
- This is an error that could occur during circuit synthesis contexts, such as CRS generation, proving or verification.
Constants
Traits
- Computations are expressed in terms of arithmetic circuits, in particular rank-1 quadratic constraint systems. The
Circuit
trait represents a circuit that can be synthesized. Thesynthesize
method is called during CRS generation and during proving. - Represents a constraint system which can have new variables allocated and constrains between them formed.