1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use ff::{Field, PrimeField};
use futures::Future;
use groupy::{CurveAffine, CurveProjective};
use paired::{Engine, PairingCurveAffine};
use rayon::prelude::*;
use std::sync::Arc;

use super::{BatchPreparedVerifyingKey, PreparedVerifyingKey, Proof, VerifyingKey};
use crate::gpu::LockedMultiexpKernel;
use crate::multicore::Worker;
use crate::multiexp::{multiexp, FullDensity};
use crate::SynthesisError;

pub fn prepare_verifying_key<E: Engine>(vk: &VerifyingKey<E>) -> PreparedVerifyingKey<E> {
    let mut gamma = vk.gamma_g2;
    gamma.negate();
    let mut delta = vk.delta_g2;
    delta.negate();

    PreparedVerifyingKey {
        alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
        neg_gamma_g2: gamma.prepare(),
        neg_delta_g2: delta.prepare(),
        ic: vk.ic.clone(),
    }
}

pub fn prepare_batch_verifying_key<E: Engine>(
    vk: &VerifyingKey<E>,
) -> BatchPreparedVerifyingKey<E> {
    BatchPreparedVerifyingKey {
        alpha_g1_beta_g2: E::pairing(vk.alpha_g1, vk.beta_g2),
        gamma_g2: vk.gamma_g2.prepare(),
        delta_g2: vk.delta_g2.prepare(),
        ic: vk.ic.clone(),
    }
}

pub fn verify_proof<'a, E: Engine>(
    pvk: &'a PreparedVerifyingKey<E>,
    proof: &Proof<E>,
    public_inputs: &[E::Fr],
) -> Result<bool, SynthesisError> {
    if (public_inputs.len() + 1) != pvk.ic.len() {
        return Err(SynthesisError::MalformedVerifyingKey);
    }

    let mut acc = pvk.ic[0].into_projective();

    for (i, b) in public_inputs.iter().zip(pvk.ic.iter().skip(1)) {
        acc.add_assign(&b.mul(i.into_repr()));
    }

    // The original verification equation is:
    // A * B = alpha * beta + inputs * gamma + C * delta
    // ... however, we rearrange it so that it is:
    // A * B - inputs * gamma - C * delta = alpha * beta
    // or equivalently:
    // A * B + inputs * (-gamma) + C * (-delta) = alpha * beta
    // which allows us to do a single final exponentiation.

    Ok(E::final_exponentiation(&E::miller_loop(
        [
            (&proof.a.prepare(), &proof.b.prepare()),
            (&acc.into_affine().prepare(), &pvk.neg_gamma_g2),
            (&proof.c.prepare(), &pvk.neg_delta_g2),
        ]
        .iter(),
    ))
    .unwrap()
        == pvk.alpha_g1_beta_g2)
}

/// Randomized batch verification - see Appendix B.2 in Zcash spec
pub fn verify_proofs_batch<'a, E: Engine, R: rand::RngCore>(
    pvk: &'a BatchPreparedVerifyingKey<E>,
    rng: &mut R,
    proofs: &[&Proof<E>],
    public_inputs: &[Vec<E::Fr>],
) -> Result<bool, SynthesisError>
where
    <<E as ff::ScalarEngine>::Fr as ff::PrimeField>::Repr: From<<E as ff::ScalarEngine>::Fr>,
{
    for pub_input in public_inputs {
        if (pub_input.len() + 1) != pvk.ic.len() {
            return Err(SynthesisError::MalformedVerifyingKey);
        }
    }

    let worker = Worker::new();
    let pi_num = pvk.ic.len() - 1;
    let proof_num = proofs.len();

    // choose random coefficients for combining the proofs
    let mut r: Vec<E::Fr> = Vec::with_capacity(proof_num);
    for _ in 0..proof_num {
        use rand::Rng;

        let t: u128 = rng.gen();
        let mut el = E::Fr::zero().into_repr();
        let el_ref: &mut [u64] = el.as_mut();
        assert!(el_ref.len() > 1);
        el_ref[0] = (t & (-1i64 as u128) >> 64) as u64;
        el_ref[1] = (t >> 64) as u64;

        r.push(E::Fr::from_repr(el).unwrap());
    }

    let mut sum_r = E::Fr::zero();
    for i in r.iter() {
        sum_r.add_assign(i);
    }

    // create corresponding scalars for public input vk elements
    let pi_scalars: Vec<_> = (0..pi_num)
        .into_par_iter()
        .map(|i| {
            let mut pi = E::Fr::zero();
            for j in 0..proof_num {
                // z_j * a_j,i
                let mut tmp = r[j];
                tmp.mul_assign(&public_inputs[j][i]);
                pi.add_assign(&tmp);
            }
            pi.into_repr()
        })
        .collect();

    let mut multiexp_kern = get_verifier_kernel(pi_num);

    // create group element corresponding to public input combination
    // This roughly corresponds to Accum_Gamma in spec
    let mut acc_pi = pvk.ic[0].mul(sum_r.into_repr());
    acc_pi.add_assign(
        &multiexp(
            &worker,
            (Arc::new(pvk.ic[1..].to_vec()), 0),
            FullDensity,
            Arc::new(pi_scalars),
            &mut multiexp_kern,
        )
        .wait()
        .unwrap(),
    );

    // This corresponds to Accum_Y
    // -Accum_Y
    sum_r.negate();
    // This corresponds to Y^-Accum_Y
    let acc_y = pvk.alpha_g1_beta_g2.pow(&sum_r.into_repr());

    // This corresponds to Accum_Delta
    let mut acc_c = E::G1::zero();
    for (rand_coeff, proof) in r.iter().zip(proofs.iter()) {
        let mut tmp: E::G1 = proof.c.into();
        tmp.mul_assign(*rand_coeff);
        acc_c.add_assign(&tmp);
    }

    // This corresponds to Accum_AB
    let ml = r
        .par_iter()
        .zip(proofs.par_iter())
        .map(|(rand_coeff, proof)| {
            // [z_j] pi_j,A
            let mut tmp: E::G1 = proof.a.into();
            tmp.mul_assign(*rand_coeff);
            let g1 = tmp.into_affine().prepare();

            // -pi_j,B
            let mut tmp: E::G2 = proof.b.into();
            tmp.negate();
            let g2 = tmp.into_affine().prepare();

            (g1, g2)
        })
        .collect::<Vec<_>>();
    let mut parts = ml.iter().map(|(a, b)| (a, b)).collect::<Vec<_>>();

    // MillerLoop(Accum_Delta)
    let acc_c_prepared = acc_c.into_affine().prepare();
    parts.push((&acc_c_prepared, &pvk.delta_g2));

    // MillerLoop(\sum Accum_Gamma)
    let acc_pi_prepared = acc_pi.into_affine().prepare();
    parts.push((&acc_pi_prepared, &pvk.gamma_g2));

    let res = E::miller_loop(&parts);
    Ok(E::final_exponentiation(&res).unwrap() == acc_y)
}

fn get_verifier_kernel<E: Engine>(pi_num: usize) -> Option<LockedMultiexpKernel<E>> {
    match &std::env::var("BELLMAN_VERIFIER")
        .unwrap_or("auto".to_string())
        .to_lowercase()[..]
    {
        "gpu" => {
            let log_d = (pi_num as f32).log2().ceil() as usize;
            Some(LockedMultiexpKernel::<E>::new(log_d, false))
        }
        "cpu" => None,
        "auto" => None,
        s => panic!("Invalid verifier device selected: {}", s),
    }
}