1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
use std::io;
use std::marker::PhantomData;

use ec_gpu_gen::EcError;
use ff::PrimeField;

use crate::{gpu, Index, LinearCombination, Variable};

/// Computations are expressed in terms of arithmetic circuits, in particular
/// rank-1 quadratic constraint systems. The `Circuit` trait represents a
/// circuit that can be synthesized. The `synthesize` method is called during
/// CRS generation and during proving.
pub trait Circuit<Scalar: PrimeField> {
    /// Synthesize the circuit into a rank-1 quadratic constraint system.
    fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError>;
}

/// This is an error that could occur during circuit synthesis contexts,
/// such as CRS generation, proving or verification.
#[allow(clippy::upper_case_acronyms)]
#[derive(thiserror::Error, Debug)]
pub enum SynthesisError {
    /// During synthesis, we lacked knowledge of a variable assignment.
    #[error("an assignment for a variable could not be computed")]
    AssignmentMissing,
    /// During synthesis, we divided by zero.
    #[error("division by zero")]
    DivisionByZero,
    /// During synthesis, we constructed an unsatisfiable constraint system.
    #[error("unsatisfiable constraint system")]
    Unsatisfiable,
    /// During synthesis, our polynomials ended up being too high of degree
    #[error("polynomial degree is too large")]
    PolynomialDegreeTooLarge,
    /// During proof generation, we encountered an identity in the CRS
    #[error("encountered an identity element in the CRS")]
    UnexpectedIdentity,
    /// During proof generation, we encountered an I/O error with the CRS
    #[error("encountered an I/O error: {0}")]
    IoError(#[from] io::Error),
    /// During verification, our verifying key was malformed.
    #[error("malformed verifying key")]
    MalformedVerifyingKey,
    /// During CRS generation, we observed an unconstrained auxiliary variable
    #[error("auxiliary variable was unconstrained")]
    UnconstrainedVariable,
    /// During GPU multiexp/fft, some GPU related error happened
    #[error("encountered a GPU error: {0}")]
    GpuError(#[from] gpu::GpuError),
    #[error("attempted to aggregate malformed proofs: {0}")]
    MalformedProofs(String),
    #[error("malformed SRS")]
    MalformedSrs,
    #[error("non power of two proofs given for aggregation")]
    NonPowerOfTwo,
    #[error("incompatible vector length: {0}")]
    IncompatibleLengthVector(String),
    #[error("invalid pairing")]
    InvalidPairing,
}

// Don't create a separate "EC GPU error", but convert it into a `GpuError` first.
impl From<EcError> for SynthesisError {
    fn from(source: EcError) -> Self {
        gpu::GpuError::from(source).into()
    }
}

/// Represents a constraint system which can have new variables
/// allocated and constrains between them formed.
pub trait ConstraintSystem<Scalar: PrimeField>: Sized + Send {
    /// Represents the type of the "root" of this constraint system
    /// so that nested namespaces can minimize indirection.
    type Root: ConstraintSystem<Scalar>;

    fn new() -> Self {
        unimplemented!(
            "ConstraintSystem::new must be implemented for extensible types implementing ConstraintSystem"
        );
    }

    /// Return the "one" input variable
    fn one() -> Variable {
        Variable::new_unchecked(Index::Input(0))
    }

    /// Allocate a private variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable. The given `annotation` function is invoked
    /// in testing contexts in order to derive a unique name for this variable in the current
    /// namespace.
    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Allocate a public variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>;

    /// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
    /// in order to derive a unique name for the constraint in the current namespace.
    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LB: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LC: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>;

    /// Create a new (sub)namespace and enter into it. Not intended
    /// for downstream use; use `namespace` instead.
    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR;

    /// Exit out of the existing namespace. Not intended for
    /// downstream use; use `namespace` instead.
    fn pop_namespace(&mut self);

    /// Gets the "root" constraint system, bypassing the namespacing.
    /// Not intended for downstream use; use `namespace` instead.
    fn get_root(&mut self) -> &mut Self::Root;

    /// Begin a namespace for this constraint system.
    fn namespace<NR, N>(&mut self, name_fn: N) -> Namespace<'_, Scalar, Self::Root>
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        self.get_root().push_namespace(name_fn);

        Namespace(self.get_root(), Default::default())
    }

    /// Most implementations of ConstraintSystem are not 'extensible': they won't implement a specialized
    /// version of `extend` and should therefore also keep the default implementation of `is_extensible`
    /// so callers which optionally make use of `extend` can know to avoid relying on it when unimplemented.
    fn is_extensible() -> bool {
        false
    }

    /// Extend concatenates thew  `other` constraint systems to the receiver, modifying the receiver, whose
    /// inputs, allocated variables, and constraints will precede those of the `other` constraint system.
    /// The primary use case for this is parallel synthesis of circuits which can be decomposed into
    /// entirely independent sub-circuits. Each can be synthesized in its own thread, then the
    /// original `ConstraintSystem` can be extended with each, in the same order they would have
    /// been synthesized sequentially.
    fn extend(&mut self, _other: Self) {
        unimplemented!(
            "ConstraintSystem::extend must be implemented for types implementing ConstraintSystem"
        );
    }
}

/// This is a "namespaced" constraint system which borrows a constraint system (pushing
/// a namespace context) and, when dropped, pops out of the namespace context.
pub struct Namespace<'a, Scalar: PrimeField, CS: ConstraintSystem<Scalar>>(
    &'a mut CS,
    PhantomData<Scalar>,
);

impl<'cs, Scalar: PrimeField, CS: ConstraintSystem<Scalar>> ConstraintSystem<Scalar>
    for Namespace<'cs, Scalar, CS>
{
    type Root = CS::Root;

    fn one() -> Variable {
        CS::one()
    }

    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.0.alloc(annotation, f)
    }

    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        self.0.alloc_input(annotation, f)
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LB: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LC: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
    {
        self.0.enforce(annotation, a, b, c)
    }

    // Downstream users who use `namespace` will never interact with these
    // functions and they will never be invoked because the namespace is
    // never a root constraint system.

    fn push_namespace<NR, N>(&mut self, _: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        panic!("only the root's push_namespace should be called");
    }

    fn pop_namespace(&mut self) {
        panic!("only the root's pop_namespace should be called");
    }

    fn get_root(&mut self) -> &mut Self::Root {
        self.0.get_root()
    }
}

impl<'a, Scalar: PrimeField, CS: ConstraintSystem<Scalar>> Drop for Namespace<'a, Scalar, CS> {
    fn drop(&mut self) {
        self.get_root().pop_namespace()
    }
}

/// Convenience implementation of ConstraintSystem<Scalar> for mutable references to
/// constraint systems.
impl<'cs, Scalar: PrimeField, CS: ConstraintSystem<Scalar>> ConstraintSystem<Scalar>
    for &'cs mut CS
{
    type Root = CS::Root;

    fn one() -> Variable {
        CS::one()
    }

    fn alloc<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        (**self).alloc(annotation, f)
    }

    fn alloc_input<F, A, AR>(&mut self, annotation: A, f: F) -> Result<Variable, SynthesisError>
    where
        F: FnOnce() -> Result<Scalar, SynthesisError>,
        A: FnOnce() -> AR,
        AR: Into<String>,
    {
        (**self).alloc_input(annotation, f)
    }

    fn enforce<A, AR, LA, LB, LC>(&mut self, annotation: A, a: LA, b: LB, c: LC)
    where
        A: FnOnce() -> AR,
        AR: Into<String>,
        LA: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LB: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
        LC: FnOnce(LinearCombination<Scalar>) -> LinearCombination<Scalar>,
    {
        (**self).enforce(annotation, a, b, c)
    }

    fn push_namespace<NR, N>(&mut self, name_fn: N)
    where
        NR: Into<String>,
        N: FnOnce() -> NR,
    {
        (**self).push_namespace(name_fn)
    }

    fn pop_namespace(&mut self) {
        (**self).pop_namespace()
    }

    fn get_root(&mut self) -> &mut Self::Root {
        (**self).get_root()
    }
}