1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
//! This module contains an [`EvaluationDomain`] abstraction for performing
//! various kinds of polynomial arithmetic on top of the scalar field.
//!
//! In pairing-based SNARKs like [Groth16], we need to calculate a quotient
//! polynomial over a target polynomial with roots at distinct points associated
//! with each constraint of the constraint system. In order to be efficient, we
//! choose these roots to be the powers of a 2<sup>n</sup> root of unity in the
//! field. This allows us to perform polynomial operations in O(n) by performing
//! an O(n log n) FFT over such a domain.
//!
//! [`EvaluationDomain`]: crate::domain::EvaluationDomain
//! [Groth16]: https://eprint.iacr.org/2016/260

#[cfg(any(feature = "cuda", feature = "opencl"))]
use ec_gpu_gen::fft::FftKernel;
use ff::{Field, PrimeField};
use pairing::Engine;

use super::SynthesisError;
use crate::gpu;
use ec_gpu_gen::fft_cpu;
use ec_gpu_gen::threadpool::Worker;

pub struct EvaluationDomain<E: Engine + gpu::GpuEngine> {
    coeffs: Vec<E::Fr>,
    exp: u32,
    omega: E::Fr,
    omegainv: E::Fr,
    geninv: E::Fr,
    minv: E::Fr,
}

impl<E: Engine + gpu::GpuEngine> AsRef<[E::Fr]> for EvaluationDomain<E> {
    fn as_ref(&self) -> &[E::Fr] {
        &self.coeffs
    }
}

impl<E: Engine + gpu::GpuEngine> AsMut<[E::Fr]> for EvaluationDomain<E> {
    fn as_mut(&mut self) -> &mut [E::Fr] {
        &mut self.coeffs
    }
}

impl<E: Engine + gpu::GpuEngine> EvaluationDomain<E> {
    pub fn into_coeffs(self) -> Vec<E::Fr> {
        self.coeffs
    }

    pub fn from_coeffs(mut coeffs: Vec<E::Fr>) -> Result<EvaluationDomain<E>, SynthesisError> {
        // Compute the size of our evaluation domain
        let mut m = 1;
        let mut exp = 0;
        while m < coeffs.len() {
            m *= 2;
            exp += 1;

            // The pairing-friendly curve may not be able to support
            // large enough (radix2) evaluation domains.
            if exp >= E::Fr::S {
                return Err(SynthesisError::PolynomialDegreeTooLarge);
            }
        }
        // Compute omega, the 2^exp primitive root of unity
        let mut omega = E::Fr::root_of_unity();
        for _ in exp..E::Fr::S {
            omega = omega.square();
        }

        // Extend the coeffs vector with zeroes if necessary
        coeffs.resize(m, E::Fr::zero());

        Ok(EvaluationDomain {
            coeffs,
            exp,
            omega,
            omegainv: omega.invert().unwrap(),
            geninv: E::Fr::multiplicative_generator().invert().unwrap(),
            minv: E::Fr::from(m as u64).invert().unwrap(),
        })
    }

    pub fn fft(
        &mut self,
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        best_fft::<E>(
            kern,
            worker,
            &mut [&mut self.coeffs],
            &[self.omega],
            &[self.exp],
        );
        Ok(())
    }

    /// Execute three FFTs in parallel.
    pub fn fft_many(
        domains: &mut [&mut Self],
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        let (mut coeffs, rest): (Vec<_>, Vec<_>) = domains
            .iter_mut()
            .map(|domain| (&mut domain.coeffs[..], (domain.omega, domain.exp)))
            .unzip();
        let (omegas, exps): (Vec<_>, Vec<_>) = rest.into_iter().unzip();
        best_fft(kern, worker, &mut coeffs[..], &omegas, &exps);

        Ok(())
    }

    pub fn ifft(
        &mut self,
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        Self::ifft_many(&mut [self], worker, kern)
    }

    /// Execute multiple IFFTs in parallel.
    pub fn ifft_many(
        domains: &mut [&mut Self],
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        let (mut coeffs, rest): (Vec<_>, Vec<_>) = domains
            .iter_mut()
            .map(|domain| (&mut domain.coeffs[..], (domain.omegainv, domain.exp)))
            .unzip();
        let (omegas, exps): (Vec<_>, Vec<_>) = rest.into_iter().unzip();

        best_fft(kern, worker, &mut coeffs, &omegas, &exps);

        for domain in domains {
            worker.scope(domain.coeffs.len(), |scope, chunk| {
                let minv = domain.minv;

                for v in domain.coeffs.chunks_mut(chunk) {
                    scope.execute(move || {
                        for v in v {
                            *v *= minv;
                        }
                    });
                }
            });
        }

        Ok(())
    }

    pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr) {
        worker.scope(self.coeffs.len(), |scope, chunk| {
            for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
                scope.execute(move || {
                    let mut u = g.pow_vartime(&[(i * chunk) as u64]);
                    for v in v.iter_mut() {
                        *v *= u;
                        u *= g;
                    }
                });
            }
        });
    }

    pub fn coset_fft(
        &mut self,
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        Self::coset_fft_many(&mut [self], worker, kern)
    }

    /// Execute three Coset FFTs in parallel.
    pub fn coset_fft_many(
        domains: &mut [&mut Self],
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        for domain in domains.iter_mut() {
            domain.distribute_powers(worker, E::Fr::multiplicative_generator());
        }

        Self::fft_many(domains, worker, kern)?;

        Ok(())
    }

    pub fn icoset_fft(
        &mut self,
        worker: &Worker,
        kern: &mut Option<gpu::LockedFFTKernel<E>>,
    ) -> gpu::GpuResult<()> {
        let geninv = self.geninv;
        self.ifft(worker, kern)?;
        self.distribute_powers(worker, geninv);
        Ok(())
    }

    /// This evaluates t(tau) for this domain, which is
    /// tau^m - 1 for these radix-2 domains.
    pub fn z(&self, tau: &E::Fr) -> E::Fr {
        let tmp = tau.pow_vartime(&[self.coeffs.len() as u64]);
        tmp - E::Fr::one()
    }

    /// The target polynomial is the zero polynomial in our
    /// evaluation domain, so we must perform division over
    /// a coset.
    pub fn divide_by_z_on_coset(&mut self, worker: &Worker) {
        let i = self.z(&E::Fr::multiplicative_generator()).invert().unwrap();

        worker.scope(self.coeffs.len(), |scope, chunk| {
            for v in self.coeffs.chunks_mut(chunk) {
                scope.execute(move || {
                    for v in v {
                        *v *= i;
                    }
                });
            }
        });
    }

    /// Perform O(n) multiplication of two polynomials in the domain.
    pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E>) {
        assert_eq!(self.coeffs.len(), other.coeffs.len());

        worker.scope(self.coeffs.len(), |scope, chunk| {
            for (a, b) in self
                .coeffs
                .chunks_mut(chunk)
                .zip(other.coeffs.chunks(chunk))
            {
                scope.execute(move || {
                    for (a, b) in a.iter_mut().zip(b.iter()) {
                        *a *= b;
                    }
                });
            }
        });
    }

    /// Perform O(n) subtraction of one polynomial from another in the domain.
    pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E>) {
        assert_eq!(self.coeffs.len(), other.coeffs.len());

        worker.scope(self.coeffs.len(), |scope, chunk| {
            for (a, b) in self
                .coeffs
                .chunks_mut(chunk)
                .zip(other.coeffs.chunks(chunk))
            {
                scope.execute(move || {
                    for (a, b) in a.iter_mut().zip(b.iter()) {
                        *a -= b;
                    }
                });
            }
        });
    }
}

fn best_fft<E: Engine + gpu::GpuEngine>(
    #[allow(unused_variables)] kern: &mut Option<gpu::LockedFFTKernel<E>>,
    worker: &Worker,
    coeffs: &mut [&mut [E::Fr]],
    omegas: &[E::Fr],
    log_ns: &[u32],
) {
    #[cfg(any(feature = "cuda", feature = "opencl"))]
    if let Some(ref mut kern) = kern {
        if kern
            .with(|k: &mut FftKernel<E>| gpu_fft(k, coeffs, omegas, log_ns))
            .is_ok()
        {
            return;
        }
    }

    let log_cpus = worker.log_num_threads();
    for ((a, omega), log_n) in coeffs.iter_mut().zip(omegas.iter()).zip(log_ns.iter()) {
        if *log_n <= log_cpus {
            fft_cpu::serial_fft::<E>(*a, omega, *log_n);
        } else {
            fft_cpu::parallel_fft::<E>(*a, worker, omega, *log_n, log_cpus);
        }
    }
}

#[cfg(any(feature = "cuda", feature = "opencl"))]
pub fn gpu_fft<E: Engine + gpu::GpuEngine>(
    kern: &mut FftKernel<E>,
    coeffs: &mut [&mut [E::Fr]],
    omegas: &[E::Fr],
    log_ns: &[u32],
) -> gpu::GpuResult<()> {
    Ok(kern.radix_fft_many(coeffs, omegas, log_ns)?)
}

#[cfg(test)]
mod tests {
    use super::*;

    // Test multiplying various (low degree) polynomials together and
    // comparing with naive evaluations.
    #[test]
    fn polynomial_arith() {
        use blstrs::Bls12;
        use rand_core::RngCore;

        fn test_mul<E: Engine + gpu::GpuEngine, R: RngCore>(rng: &mut R) {
            let worker = Worker::new();

            for coeffs_a in 0..70 {
                for coeffs_b in 0..70 {
                    let mut a: Vec<_> = (0..coeffs_a).map(|_| E::Fr::random(&mut *rng)).collect();
                    let mut b: Vec<_> = (0..coeffs_b).map(|_| E::Fr::random(&mut *rng)).collect();

                    // naive evaluation
                    let mut naive = vec![E::Fr::zero(); coeffs_a + coeffs_b];
                    for (i1, a) in a.iter().enumerate() {
                        for (i2, b) in b.iter().enumerate() {
                            naive[i1 + i2] += *a * b;
                        }
                    }

                    a.resize(coeffs_a + coeffs_b, E::Fr::zero());
                    b.resize(coeffs_a + coeffs_b, E::Fr::zero());

                    let mut a = EvaluationDomain::<E>::from_coeffs(a).unwrap();
                    let mut b = EvaluationDomain::<E>::from_coeffs(b).unwrap();

                    a.fft(&worker, &mut None).unwrap();
                    b.fft(&worker, &mut None).unwrap();
                    a.mul_assign(&worker, &b);
                    a.ifft(&worker, &mut None).unwrap();

                    for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
                        assert!(naive == fft);
                    }
                }
            }
        }

        let rng = &mut rand::thread_rng();

        test_mul::<Bls12, _>(rng);
    }

    #[test]
    fn fft_composition() {
        use blstrs::Bls12;
        use pairing::Engine;
        use rand_core::RngCore;

        fn test_comp<E: Engine + gpu::GpuEngine, R: RngCore>(rng: &mut R) {
            let worker = Worker::new();

            for coeffs in 0..10 {
                let coeffs = 1 << coeffs;

                let mut v = vec![];
                for _ in 0..coeffs {
                    v.push(E::Fr::random(&mut *rng));
                }

                let mut domain = EvaluationDomain::<E>::from_coeffs(v.clone()).unwrap();
                domain.ifft(&worker, &mut None).unwrap();
                domain.fft(&worker, &mut None).unwrap();
                assert!(v == domain.coeffs);
                domain.fft(&worker, &mut None).unwrap();
                domain.ifft(&worker, &mut None).unwrap();
                assert!(v == domain.coeffs);
                domain.icoset_fft(&worker, &mut None).unwrap();
                domain.coset_fft(&worker, &mut None).unwrap();
                assert!(v == domain.coeffs);
                domain.coset_fft(&worker, &mut None).unwrap();
                domain.icoset_fft(&worker, &mut None).unwrap();
                assert!(v == domain.coeffs);
            }
        }

        let rng = &mut rand::thread_rng();

        test_comp::<Bls12, _>(rng);
    }
}