1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
use std::io;
use std::iter;
use std::sync::Arc;

use bit_vec::{self, BitVec};
use ff::{Field, PrimeField, PrimeFieldRepr, ScalarEngine};
use groupy::{CurveAffine, CurveProjective};
use log::{info, warn};
use rayon::prelude::*;

use super::multicore::{Waiter, Worker};
use super::SynthesisError;
use crate::gpu;

/// An object that builds a source of bases.
pub trait SourceBuilder<G: CurveAffine>: Send + Sync + 'static + Clone {
    type Source: Source<G>;

    #[allow(clippy::wrong_self_convention)]
    fn new(self) -> Self::Source;
    fn get(self) -> (Arc<Vec<G>>, usize);
}

/// A source of bases, like an iterator.
pub trait Source<G: CurveAffine> {
    /// Parses the element from the source. Fails if the point is at infinity.
    fn add_assign_mixed(
        &mut self,
        to: &mut <G as CurveAffine>::Projective,
    ) -> Result<(), SynthesisError>;

    /// Skips `amt` elements from the source, avoiding deserialization.
    fn skip(&mut self, amt: usize) -> Result<(), SynthesisError>;
}

impl<G: CurveAffine> SourceBuilder<G> for (Arc<Vec<G>>, usize) {
    type Source = (Arc<Vec<G>>, usize);

    fn new(self) -> (Arc<Vec<G>>, usize) {
        (self.0.clone(), self.1)
    }

    fn get(self) -> (Arc<Vec<G>>, usize) {
        (self.0.clone(), self.1)
    }
}

impl<G: CurveAffine> Source<G> for (Arc<Vec<G>>, usize) {
    fn add_assign_mixed(
        &mut self,
        to: &mut <G as CurveAffine>::Projective,
    ) -> Result<(), SynthesisError> {
        if self.0.len() <= self.1 {
            return Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "expected more bases from source",
            )
            .into());
        }

        if self.0[self.1].is_zero() {
            return Err(SynthesisError::UnexpectedIdentity);
        }

        to.add_assign_mixed(&self.0[self.1]);

        self.1 += 1;

        Ok(())
    }

    fn skip(&mut self, amt: usize) -> Result<(), SynthesisError> {
        if self.0.len() <= self.1 {
            return Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "expected more bases from source",
            )
            .into());
        }

        self.1 += amt;

        Ok(())
    }
}

pub trait QueryDensity {
    /// Returns whether the base exists.
    type Iter: Iterator<Item = bool>;

    fn iter(self) -> Self::Iter;
    fn get_query_size(self) -> Option<usize>;
}

#[derive(Clone)]
pub struct FullDensity;

impl AsRef<FullDensity> for FullDensity {
    fn as_ref(&self) -> &FullDensity {
        self
    }
}

impl<'a> QueryDensity for &'a FullDensity {
    type Iter = iter::Repeat<bool>;

    fn iter(self) -> Self::Iter {
        iter::repeat(true)
    }

    fn get_query_size(self) -> Option<usize> {
        None
    }
}

#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct DensityTracker {
    pub bv: BitVec,
    pub total_density: usize,
}

impl<'a> QueryDensity for &'a DensityTracker {
    type Iter = bit_vec::Iter<'a>;

    fn iter(self) -> Self::Iter {
        self.bv.iter()
    }

    fn get_query_size(self) -> Option<usize> {
        Some(self.bv.len())
    }
}

impl DensityTracker {
    pub fn new() -> DensityTracker {
        DensityTracker {
            bv: BitVec::new(),
            total_density: 0,
        }
    }

    pub fn add_element(&mut self) {
        self.bv.push(false);
    }

    pub fn inc(&mut self, idx: usize) {
        if !self.bv.get(idx).unwrap() {
            self.bv.set(idx, true);
            self.total_density += 1;
        }
    }

    pub fn get_total_density(&self) -> usize {
        self.total_density
    }

    /// Extend by concatenating `other`. If `is_input_density` is true, then we are tracking an input density,
    /// and other may contain a redundant input for the `One` element. Coalesce those as needed and track the result.
    pub fn extend(&mut self, other: Self, is_input_density: bool) {
        if other.bv.is_empty() {
            // Nothing to do if other is empty.
            return;
        }

        if self.bv.is_empty() {
            // If self is empty, assume other's density.
            self.total_density = other.total_density;
            self.bv = other.bv;
            return;
        }

        if is_input_density {
            // Input densities need special handling to coalesce their first inputs.

            if other.bv[0] {
                // If other's first bit is set,
                if self.bv[0] {
                    // And own first bit is set, then decrement total density so the final sum doesn't overcount.
                    self.total_density -= 1;
                } else {
                    // Otherwise, set own first bit.
                    self.bv.set(0, true);
                }
            }
            // Now discard other's first bit, having accounted for it above, and extend self by remaining bits.
            self.bv.extend(other.bv.iter().skip(1));
        } else {
            // Not an input density, just extend straightforwardly.
            self.bv.extend(other.bv);
        }

        // Since any needed adjustments to total densities have been made, just sum the totals and keep the sum.
        self.total_density += other.total_density;
    }
}

fn multiexp_inner<Q, D, G, S>(
    bases: S,
    density_map: D,
    exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
    c: u32,
) -> Result<<G as CurveAffine>::Projective, SynthesisError>
where
    for<'a> &'a Q: QueryDensity,
    D: Send + Sync + 'static + Clone + AsRef<Q>,
    G: CurveAffine,
    S: SourceBuilder<G>,
{
    // Perform this region of the multiexp
    let this = move |bases: S,
                     density_map: D,
                     exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
                     skip: u32|
          -> Result<_, SynthesisError> {
        // Accumulate the result
        let mut acc = G::Projective::zero();

        // Build a source for the bases
        let mut bases = bases.new();

        // Create space for the buckets
        let mut buckets = vec![<G as CurveAffine>::Projective::zero(); (1 << c) - 1];

        let zero = <G::Engine as ScalarEngine>::Fr::zero().into_repr();
        let one = <G::Engine as ScalarEngine>::Fr::one().into_repr();

        // only the first round uses this
        let handle_trivial = skip == 0;

        // Sort the bases into buckets
        for (&exp, density) in exponents.iter().zip(density_map.as_ref().iter()) {
            if density {
                if exp == zero {
                    bases.skip(1)?;
                } else if exp == one {
                    if handle_trivial {
                        bases.add_assign_mixed(&mut acc)?;
                    } else {
                        bases.skip(1)?;
                    }
                } else {
                    let mut exp = exp;
                    exp.shr(skip);
                    let exp = exp.as_ref()[0] % (1 << c);

                    if exp != 0 {
                        bases.add_assign_mixed(&mut buckets[(exp - 1) as usize])?;
                    } else {
                        bases.skip(1)?;
                    }
                }
            }
        }

        // Summation by parts
        // e.g. 3a + 2b + 1c = a +
        //                    (a) + b +
        //                    ((a) + b) + c
        let mut running_sum = G::Projective::zero();
        for exp in buckets.into_iter().rev() {
            running_sum.add_assign(&exp);
            acc.add_assign(&running_sum);
        }

        Ok(acc)
    };

    let parts = (0..<G::Engine as ScalarEngine>::Fr::NUM_BITS)
        .into_par_iter()
        .step_by(c as usize)
        .map(|skip| this(bases.clone(), density_map.clone(), exponents.clone(), skip))
        .collect::<Vec<Result<_, _>>>();

    parts
        .into_iter()
        .rev()
        .try_fold(<G as CurveAffine>::Projective::zero(), |mut acc, part| {
            for _ in 0..c {
                acc.double();
            }

            acc.add_assign(&part?);
            Ok(acc)
        })
}

/// Perform multi-exponentiation. The caller is responsible for ensuring the
/// query size is the same as the number of exponents.
pub fn multiexp<Q, D, G, S>(
    pool: &Worker,
    bases: S,
    density_map: D,
    exponents: Arc<Vec<<<G::Engine as ScalarEngine>::Fr as PrimeField>::Repr>>,
    kern: &mut Option<gpu::LockedMultiexpKernel<G::Engine>>,
) -> Waiter<Result<<G as CurveAffine>::Projective, SynthesisError>>
where
    for<'a> &'a Q: QueryDensity,
    D: Send + Sync + 'static + Clone + AsRef<Q>,
    G: CurveAffine,
    G::Engine: crate::bls::Engine,
    S: SourceBuilder<G>,
{
    if let Some(ref mut kern) = kern {
        if let Ok(p) = kern.with(|k: &mut gpu::MultiexpKernel<G::Engine>| {
            let mut exps = vec![exponents[0]; exponents.len()];
            let mut n = 0;
            for (&e, d) in exponents.iter().zip(density_map.as_ref().iter()) {
                if d {
                    exps[n] = e;
                    n += 1;
                }
            }

            let (bss, skip) = bases.clone().get();
            k.multiexp(pool, bss, Arc::new(exps), skip, n)
        }) {
            return Waiter::done(Ok(p));
        }
    }

    let c = if exponents.len() < 32 {
        3u32
    } else {
        (f64::from(exponents.len() as u32)).ln().ceil() as u32
    };

    if let Some(query_size) = density_map.as_ref().get_query_size() {
        // If the density map has a known query size, it should not be
        // inconsistent with the number of exponents.
        assert!(query_size == exponents.len());
    }

    #[allow(clippy::let_and_return)]
    let result = pool.compute(move || multiexp_inner(bases, density_map, exponents, c));
    #[cfg(feature = "gpu")]
    {
        // Do not give the control back to the caller till the
        // multiexp is done. We may want to reacquire the GPU again
        // between the multiexps.
        let result = result.wait();
        Waiter::done(result)
    }
    #[cfg(not(feature = "gpu"))]
    result
}

#[cfg(any(feature = "pairing", feature = "blst"))]
#[test]
fn test_with_bls12() {
    fn naive_multiexp<G: CurveAffine>(
        bases: Arc<Vec<G>>,
        exponents: Arc<Vec<<G::Scalar as PrimeField>::Repr>>,
    ) -> G::Projective {
        assert_eq!(bases.len(), exponents.len());

        let mut acc = G::Projective::zero();

        for (base, exp) in bases.iter().zip(exponents.iter()) {
            acc.add_assign(&base.mul(*exp));
        }

        acc
    }

    use crate::bls::{Bls12, Engine};

    const SAMPLES: usize = 1 << 14;

    let rng = &mut rand::thread_rng();
    let v = Arc::new(
        (0..SAMPLES)
            .map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr())
            .collect::<Vec<_>>(),
    );
    let g = Arc::new(
        (0..SAMPLES)
            .map(|_| <Bls12 as Engine>::G1::random(rng).into_affine())
            .collect::<Vec<_>>(),
    );

    let now = std::time::Instant::now();
    let naive = naive_multiexp(g.clone(), v.clone());
    println!("Naive: {}", now.elapsed().as_millis());

    let now = std::time::Instant::now();
    let pool = Worker::new();

    let fast = multiexp(&pool, (g, 0), FullDensity, v, &mut None)
        .wait()
        .unwrap();

    println!("Fast: {}", now.elapsed().as_millis());

    assert_eq!(naive, fast);
}

pub fn create_multiexp_kernel<E>(_log_d: usize, priority: bool) -> Option<gpu::MultiexpKernel<E>>
where
    E: crate::bls::Engine,
{
    match gpu::MultiexpKernel::<E>::create(priority) {
        Ok(k) => {
            info!("GPU Multiexp kernel instantiated!");
            Some(k)
        }
        Err(e) => {
            warn!("Cannot instantiate GPU Multiexp kernel! Error: {}", e);
            None
        }
    }
}

#[cfg(feature = "gpu")]
#[test]
pub fn gpu_multiexp_consistency() {
    use crate::bls::Bls12;
    use std::time::Instant;

    let _ = env_logger::try_init();
    gpu::dump_device_list();

    const MAX_LOG_D: usize = 16;
    const START_LOG_D: usize = 10;
    let mut kern = Some(gpu::LockedMultiexpKernel::<Bls12>::new(MAX_LOG_D, false));
    let pool = Worker::new();

    let rng = &mut rand::thread_rng();

    let mut bases = (0..(1 << 10))
        .map(|_| <Bls12 as crate::bls::Engine>::G1::random(rng).into_affine())
        .collect::<Vec<_>>();

    for log_d in START_LOG_D..=MAX_LOG_D {
        let g = Arc::new(bases.clone());

        let samples = 1 << log_d;
        println!("Testing Multiexp for {} elements...", samples);

        let v = Arc::new(
            (0..samples)
                .map(|_| <Bls12 as ScalarEngine>::Fr::random(rng).into_repr())
                .collect::<Vec<_>>(),
        );

        let mut now = Instant::now();
        let gpu = multiexp(&pool, (g.clone(), 0), FullDensity, v.clone(), &mut kern)
            .wait()
            .unwrap();
        let gpu_dur = now.elapsed().as_secs() * 1000 + now.elapsed().subsec_millis() as u64;
        println!("GPU took {}ms.", gpu_dur);

        now = Instant::now();
        let cpu = multiexp(&pool, (g.clone(), 0), FullDensity, v.clone(), &mut None)
            .wait()
            .unwrap();
        let cpu_dur = now.elapsed().as_secs() * 1000 + now.elapsed().subsec_millis() as u64;
        println!("CPU took {}ms.", cpu_dur);

        println!("Speedup: x{}", cpu_dur as f32 / gpu_dur as f32);

        assert_eq!(cpu, gpu);

        println!("============================");

        bases = [bases.clone(), bases.clone()].concat();
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use rand::Rng;
    use rand_core::SeedableRng;
    use rand_xorshift::XorShiftRng;

    #[test]
    fn test_extend_density_regular() {
        let mut rng = XorShiftRng::from_seed([
            0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
            0xbc, 0xe5,
        ]);

        for k in &[2, 4, 8] {
            for j in &[10, 20, 50] {
                let count: usize = k * j;

                let mut tracker_full = DensityTracker::new();
                let mut partial_trackers: Vec<DensityTracker> = Vec::with_capacity(count / k);
                for i in 0..count {
                    if i % k == 0 {
                        partial_trackers.push(DensityTracker::new());
                    }

                    let index: usize = i / k;
                    if rng.gen() {
                        tracker_full.add_element();
                        partial_trackers[index].add_element();
                    }

                    if !partial_trackers[index].bv.is_empty() {
                        let idx = rng.gen_range(0, partial_trackers[index].bv.len());
                        let offset: usize = partial_trackers
                            .iter()
                            .take(index)
                            .map(|t| t.bv.len())
                            .sum();
                        tracker_full.inc(offset + idx);
                        partial_trackers[index].inc(idx);
                    }
                }

                let mut tracker_combined = DensityTracker::new();
                for tracker in partial_trackers.into_iter() {
                    tracker_combined.extend(tracker, false);
                }
                assert_eq!(tracker_combined, tracker_full);
            }
        }
    }

    #[test]
    fn test_extend_density_input() {
        let mut rng = XorShiftRng::from_seed([
            0x59, 0x62, 0xbe, 0x5d, 0x76, 0x3d, 0x31, 0x8d, 0x17, 0xdb, 0x37, 0x32, 0x54, 0x06,
            0xbc, 0xe5,
        ]);
        let trials = 10;
        let max_bits = 10;
        let max_density = max_bits;

        // Create an empty DensityTracker.
        let empty = || DensityTracker::new();

        // Create a random DensityTracker with first bit unset.
        let unset = |rng: &mut XorShiftRng| {
            let mut dt = DensityTracker::new();
            dt.add_element();
            let n = rng.gen_range(1, max_bits);
            let target_density = rng.gen_range(0, max_density);
            for _ in 1..n {
                dt.add_element();
            }

            for _ in 0..target_density {
                if n > 1 {
                    let to_inc = rng.gen_range(1, n);
                    dt.inc(to_inc);
                }
            }
            assert!(!dt.bv[0]);
            assert_eq!(n, dt.bv.len());
            dbg!(&target_density, &dt.total_density);

            dt
        };

        // Create a random DensityTracker with first bit set.
        let set = |mut rng: &mut XorShiftRng| {
            let mut dt = unset(&mut rng);
            dt.inc(0);
            dt
        };

        for _ in 0..trials {
            {
                // Both empty.
                let (mut e1, e2) = (empty(), empty());
                e1.extend(e2, true);
                assert_eq!(empty(), e1);
            }
            {
                // First empty, second unset.
                let (mut e1, u1) = (empty(), unset(&mut rng));
                e1.extend(u1.clone(), true);
                assert_eq!(u1, e1);
            }
            {
                // First empty, second set.
                let (mut e1, s1) = (empty(), set(&mut rng));
                e1.extend(s1.clone(), true);
                assert_eq!(s1, e1);
            }
            {
                // First set, second empty.
                let (mut s1, e1) = (set(&mut rng), empty());
                let s2 = s1.clone();
                s1.extend(e1, true);
                assert_eq!(s1, s2);
            }
            {
                // First unset, second empty.
                let (mut u1, e1) = (unset(&mut rng), empty());
                let u2 = u1.clone();
                u1.extend(e1, true);
                assert_eq!(u1, u2);
            }
            {
                // First unset, second unset.
                let (mut u1, u2) = (unset(&mut rng), unset(&mut rng));
                let expected_total = u1.total_density + u2.total_density;
                u1.extend(u2, true);
                assert_eq!(expected_total, u1.total_density);
                assert!(!u1.bv[0]);
            }
            {
                // First unset, second set.
                let (mut u1, s1) = (unset(&mut rng), set(&mut rng));
                let expected_total = u1.total_density + s1.total_density;
                u1.extend(s1, true);
                assert_eq!(expected_total, u1.total_density);
                assert!(u1.bv[0]);
            }
            {
                // First set, second unset.
                let (mut s1, u1) = (set(&mut rng), unset(&mut rng));
                let expected_total = s1.total_density + u1.total_density;
                s1.extend(u1, true);
                assert_eq!(expected_total, s1.total_density);
                assert!(s1.bv[0]);
            }
            {
                // First set, second set.
                let (mut s1, s2) = (set(&mut rng), set(&mut rng));
                let expected_total = s1.total_density + s2.total_density - 1;
                s1.extend(s2, true);
                assert_eq!(expected_total, s1.total_density);
                assert!(s1.bv[0]);
            }
        }
    }
}