1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
extern crate pairing;
extern crate rand;
extern crate bit_vec;
extern crate futures;
extern crate futures_cpupool;
extern crate num_cpus;
extern crate crossbeam;

use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::io;

pub mod multicore;
pub mod domain;
pub mod groth16;
pub mod multiexp;

#[derive(Debug)]
pub enum Error {
    PolynomialDegreeTooLarge,
    MalformedVerifyingKey,
    AssignmentMissing,
    UnexpectedIdentity,
    UnconstrainedVariable(Variable),
    IoError(io::Error)
}

impl From<io::Error> for Error {
    fn from(e: io::Error) -> Error {
        Error::IoError(e)
    }
}

#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum Index {
    Input(usize),
    Aux(usize)
}

pub struct LinearCombination<E: Engine>(Vec<(Index, E::Fr)>);

impl<E: Engine> Clone for LinearCombination<E> {
    fn clone(&self) -> LinearCombination<E> {
        LinearCombination(self.0.clone())
    }
}

impl<E: Engine> LinearCombination<E> {
    pub fn zero() -> LinearCombination<E> {
        LinearCombination(vec![])
    }

    pub fn eval(
        &self,
        mut input_density: Option<&mut multiexp::DensityTracker>,
        mut aux_density: Option<&mut multiexp::DensityTracker>,
        input_assignment: &[E::Fr],
        aux_assignment: &[E::Fr]
    ) -> E::Fr
    {
        let mut acc = E::Fr::zero();

        for &(index, coeff) in self.0.iter() {
            let mut tmp;

            match index {
                Index::Input(i) => {
                    tmp = input_assignment[i];
                    if let Some(ref mut v) = input_density {
                        v.inc(i);
                    }
                },
                Index::Aux(i) => {
                    tmp = aux_assignment[i];
                    if let Some(ref mut v) = aux_density {
                        v.inc(i);
                    }
                }
            }

            if coeff == E::Fr::one() {
               acc.add_assign(&tmp);
            } else {
               tmp.mul_assign(&coeff);
               acc.add_assign(&tmp);
            }
        }

        acc
    }
}

impl<E: Engine> Add<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(self, other: Variable) -> LinearCombination<E> {
        self + (E::Fr::one(), other)
    }
}

impl<E: Engine> Sub<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(self, other: Variable) -> LinearCombination<E> {
        self - (E::Fr::one(), other)
    }
}

impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        let mut must_insert = true;

        for &mut (ref index, ref mut fr) in &mut self.0 {
            if *index == var.0 {
                fr.add_assign(&coeff);
                must_insert = false;
                break;
            }
        }

        if must_insert {
            self.0.push((var.0, coeff));
        }

        self
    }
}

impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        coeff.negate();

        self + (coeff, var)
    }
}

impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for &(k, v) in other.0.iter() {
            self = self + (v, Variable(k));
        }

        self
    }
}

impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for &(k, v) in other.0.iter() {
            self = self - (v, Variable(k));
        }

        self
    }
}

pub trait Circuit<E: Engine> {
    type InputMap: Input<E>;

    /// Synthesize the circuit into a rank-1 quadratic constraint system
    #[must_use]
    fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<Self::InputMap, Error>;
}

pub trait Input<E: Engine> {
    /// Synthesize the circuit, except with additional access to public input
    /// variables
    fn synthesize<CS: PublicConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), Error>;
}

pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E> {
    /// Allocate a public input that the verifier knows. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc_input<NR, N, F>(
        &mut self,
        name_fn: N,
        f: F
    ) -> Result<Variable, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>;
}

pub trait ConstraintSystem<E: Engine> {
    /// Return the "one" input variable
    fn one() -> Variable {
        Variable(Index::Input(0))
    }

    /// Allocate a private variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc<NR, N, F>(
        &mut self,
        name_fn: N,
        f: F
    ) -> Result<Variable, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>;

    /// Enforce that `A` * `B` = `C`.
    fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
        &mut self,
        name_fn: N,
        a: LinearCombination<E>,
        b: LinearCombination<E>,
        c: LinearCombination<E>
    );

    /// Begin a namespace for the constraint system
    fn namespace<NR, N, R, F>(
        &mut self,
        _: N,
        space_fn: F
    ) -> Result<R, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce(&mut Self) -> Result<R, Error>
    {
        space_fn(self)
    }
}

use std::collections::HashMap;

#[derive(Debug)]
enum NamedObject {
    Constraint(usize),
    Input(usize),
    Aux(usize),
    Namespace
}

/// Constraint system for testing purposes.
pub struct TestConstraintSystem<E: Engine> {
    named_objects: HashMap<String, NamedObject>,
    current_namespace: Vec<String>,
    constraints: Vec<(LinearCombination<E>, LinearCombination<E>, LinearCombination<E>)>,
    inputs: Vec<E::Fr>,
    aux: Vec<E::Fr>
}

impl<E: Engine> TestConstraintSystem<E> {
    pub fn new() -> TestConstraintSystem<E> {
        TestConstraintSystem {
            named_objects: HashMap::new(),
            current_namespace: vec![],
            constraints: vec![],
            inputs: vec![E::Fr::one()],
            aux: vec![]
        }
    }

    pub fn is_satisfied(&self) -> bool
    {
        for &(ref a, ref b, ref c) in &self.constraints {
            let mut a = a.eval(None, None, &self.inputs, &self.aux);
            let b = b.eval(None, None, &self.inputs, &self.aux);
            let c = c.eval(None, None, &self.inputs, &self.aux);

            a.mul_assign(&b);

            if a != c {
                return false
            }
        }

        true
    }

    pub fn assign(&mut self, path: &str, to: E::Fr)
    {
        match self.named_objects.get(path) {
            Some(&NamedObject::Input(index)) => self.inputs[index] = to,
            Some(&NamedObject::Aux(index)) => self.aux[index] = to,
            Some(e) => panic!("tried to assign `{:?}` a value at path: {}", e, path),
            _ => panic!("no variable exists at path: {}", path)
        }
    }

    pub fn get(&mut self, path: &str) -> E::Fr
    {
        match self.named_objects.get(path) {
            Some(&NamedObject::Input(index)) => self.inputs[index],
            Some(&NamedObject::Aux(index)) => self.aux[index],
            Some(e) => panic!("tried to get value of `{:?}` at path: {}", e, path),
            _ => panic!("no variable exists at path: {}", path)
        }
    }

    fn set_named_obj(&mut self, path: String, to: NamedObject) {
        if self.named_objects.contains_key(&path) {
            panic!("tried to create object at existing path: {}", path);
        }

        self.named_objects.insert(path, to);
    }
}

fn compute_path(ns: &[String], this: String) -> String {
    if this.chars().any(|a| a == '/') {
        panic!("'/' is not allowed in names");
    }

    let mut name = String::new();

    let mut needs_separation = false;
    for ns in ns.iter().chain(Some(&this).into_iter())
    {
        if needs_separation {
            name += "/";
        }

        name += ns;
        needs_separation = true;
    }

    name
}

impl<E: Engine> PublicConstraintSystem<E> for TestConstraintSystem<E> {
    fn alloc_input<NR, N, F>(
        &mut self,
        name_fn: N,
        f: F
    ) -> Result<Variable, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
    {
        let this_path = compute_path(&self.current_namespace, name_fn().into());
        let this_obj = NamedObject::Input(self.inputs.len());
        self.set_named_obj(this_path, this_obj);

        let var = Variable(Index::Input(self.inputs.len()));

        self.inputs.push(f()?);

        Ok(var)
    }
}

impl<E: Engine> ConstraintSystem<E> for TestConstraintSystem<E> {
    fn alloc<NR, N, F>(
        &mut self,
        name_fn: N,
        f: F
    ) -> Result<Variable, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce() -> Result<E::Fr, Error>
    {
        let this_path = compute_path(&self.current_namespace, name_fn().into());
        let this_obj = NamedObject::Aux(self.aux.len());
        self.set_named_obj(this_path, this_obj);

        let var = Variable(Index::Aux(self.aux.len()));

        self.aux.push(f()?);

        Ok(var)
    }

    fn enforce<NR: Into<String>, N: FnOnce() -> NR>(
        &mut self,
        name_fn: N,
        a: LinearCombination<E>,
        b: LinearCombination<E>,
        c: LinearCombination<E>
    )
    {
        let this_path = compute_path(&self.current_namespace, name_fn().into());
        let this_obj = NamedObject::Constraint(self.constraints.len());
        self.set_named_obj(this_path, this_obj);

        self.constraints.push((a, b, c));
    }

    fn namespace<NR, N, R, F>(
        &mut self,
        name_fn: N,
        space_fn: F
    ) -> Result<R, Error>
        where NR: Into<String>, N: FnOnce() -> NR, F: FnOnce(&mut Self) -> Result<R, Error>
    {
        let name = name_fn().into();

        let this_path = compute_path(&self.current_namespace, name.clone());
        self.set_named_obj(this_path, NamedObject::Namespace);

        self.current_namespace.push(name);

        let r = space_fn(self)?;

        self.current_namespace.pop();

        Ok(r)
    }
}