1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
extern crate pairing;
extern crate rand;
extern crate bit_vec;
extern crate futures;
extern crate futures_cpupool;
extern crate num_cpus;
extern crate crossbeam;

use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::io;

pub mod multicore;
pub mod domain;
pub mod groth16;

pub mod multiexp;
// TODO: remove this from public API?
pub use self::multiexp::{DensityTracker, FullDensity, multiexp};

#[derive(Debug)]
pub enum Error {
    PolynomialDegreeTooLarge,
    MalformedVerifyingKey,
    AssignmentMissing,
    UnexpectedIdentity,
    UnconstrainedVariable(Variable),
    IoError(io::Error)
}

impl From<io::Error> for Error {
    fn from(e: io::Error) -> Error {
        Error::IoError(e)
    }
}

#[derive(Copy, Clone, Debug)]
pub struct Variable(Index);

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum Index {
    Input(usize),
    Aux(usize)
}

pub struct LinearCombination<E: Engine>(Vec<(Index, E::Fr)>);

impl<E: Engine> Clone for LinearCombination<E> {
    fn clone(&self) -> LinearCombination<E> {
        LinearCombination(self.0.clone())
    }
}

impl<E: Engine> LinearCombination<E> {
    pub fn zero() -> LinearCombination<E> {
        LinearCombination(vec![])
    }

    pub fn eval(
        self,
        mut input_density: Option<&mut DensityTracker>,
        mut aux_density: Option<&mut DensityTracker>,
        input_assignment: &[E::Fr],
        aux_assignment: &[E::Fr]
    ) -> E::Fr
    {
        let mut acc = E::Fr::zero();

        for (index, coeff) in self.0.into_iter() {
            let mut tmp;

            match index {
                Index::Input(i) => {
                    tmp = input_assignment[i];
                    if let Some(ref mut v) = input_density {
                        v.inc(i);
                    }
                },
                Index::Aux(i) => {
                    tmp = aux_assignment[i];
                    if let Some(ref mut v) = aux_density {
                        v.inc(i);
                    }
                }
            }

            if coeff == E::Fr::one() {
               acc.add_assign(&tmp);
            } else {
               tmp.mul_assign(&coeff);
               acc.add_assign(&tmp);
            }
        }

        acc
    }
}

impl<E: Engine> Add<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(self, other: Variable) -> LinearCombination<E> {
        self + (E::Fr::one(), other)
    }
}

impl<E: Engine> Sub<Variable> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(self, other: Variable) -> LinearCombination<E> {
        self - (E::Fr::one(), other)
    }
}

impl<E: Engine> Add<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        let mut must_insert = true;

        for &mut (ref index, ref mut fr) in &mut self.0 {
            if *index == var.0 {
                fr.add_assign(&coeff);
                must_insert = false;
                break;
            }
        }

        if must_insert {
            self.0.push((var.0, coeff));
        }

        self
    }
}

impl<E: Engine> Sub<(E::Fr, Variable)> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(self, (mut coeff, var): (E::Fr, Variable)) -> LinearCombination<E> {
        coeff.negate();

        self + (coeff, var)
    }
}

impl<'a, E: Engine> Add<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn add(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for &(k, v) in other.0.iter() {
            self = self + (v, Variable(k));
        }

        self
    }
}

impl<'a, E: Engine> Sub<&'a LinearCombination<E>> for LinearCombination<E> {
    type Output = LinearCombination<E>;

    fn sub(mut self, other: &'a LinearCombination<E>) -> LinearCombination<E> {
        for &(k, v) in other.0.iter() {
            self = self - (v, Variable(k));
        }

        self
    }
}

pub trait Circuit<E: Engine> {
    type InputMap: Input<E>;

    /// Synthesize the circuit into a rank-1 quadratic constraint system
    #[must_use]
    fn synthesize<CS: ConstraintSystem<E>>(self, cs: &mut CS) -> Result<Self::InputMap, Error>;
}

pub trait Input<E: Engine> {
    /// Synthesize the circuit, except with additional access to public input
    /// variables
    fn synthesize<CS: PublicConstraintSystem<E>>(self, cs: &mut CS) -> Result<(), Error>;
}

pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E> {
    /// Allocate a public input that the verifier knows. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc_input<F: FnOnce() -> Result<E::Fr, Error>>(&mut self, f: F) -> Result<Variable, Error>;
}

pub trait ConstraintSystem<E: Engine> {
    /// Return the "one" input variable
    fn one() -> Variable {
        Variable(Index::Input(0))
    }

    /// Allocate a private variable in the constraint system. The provided function is used to
    /// determine the assignment of the variable.
    fn alloc<F: FnOnce() -> Result<E::Fr, Error>>(&mut self, f: F) -> Result<Variable, Error>;

    /// Enforce that `A` * `B` = `C`.
    fn enforce(
        &mut self,
        a: LinearCombination<E>,
        b: LinearCombination<E>,
        c: LinearCombination<E>
    );
}