1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//! Yet another axis-aligned bounding box (AABB), biased towards ray tracing.
//!
//! The design is loosely based on the `BBox` class from the second edition of *Physically
//! based rendering: From theory to implementation* by Matt Pharr and Greg Humphreys.
//! Consequently, it is geared to the demands of ray tracing and similar applications, and comes
//! with otherwise rarely-used operations such as surface area calculations and ray-AABB
//! intersection calculations.
//!
//! It is also focused entirely on 32-bit floats.
//! A 64-bit variant may be added in later versions if needed.

extern crate cgmath;

use std::f32;
use cgmath::{Vector3, vec3};

// TODO some operations might be easier to SIMD-fy with this layout: struct Aabb([f32; 6]);

/// An axis-aligned bounding box in 3D space.
///
/// The box can, for the most part, be thought of as being defined by two corners,
/// a minimum corner and a maximum corner.
/// All coordinates are 32-bit floats.
///
/// This representation does not allow empty boxes, which are occasionally useful.
/// However, one can abuse the corner vectors and set the "minimum corner" to *positive* infinity
/// and the "maximum corner" to *negative* infinity.
/// Most AABB operations will handle this without extra work if they're written carefully, but it's
/// an unnatural special case to keep in mind when working with the corners.
///
/// `Aabb` can be empty, which is implemented using the aforementioned trick, but as far as the
/// interface is concerned, it upholds the "min corner, max corner" view: empty `Aabb`s cannot be
/// constructed by specifying nonsensical corners (there is a separate constructor, `empty()`), and
/// there is no minimum or maximum corner for an empty bounding box (the accessors panic).
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Aabb {
    min: Vector3<f32>,
    max: Vector3<f32>,
}

impl Aabb {
    /// Constructs a bounding box from a set of points.
    ///
    /// Empty sets of points are valid and result in an empty bounding box.
    pub fn new<I>(points: I) -> Self
        where I: IntoIterator<Item = Vector3<f32>>
    {
        let mut res = Aabb::empty();
        for p in points {
            res.add_point(p);
        }
        res
    }

    /// Returns the "minimum corner", i.e., the coordinate-wise minimum of the region of space
    /// described by the AABB.
    ///
    /// # Panics
    ///
    /// Empty AABBs have no meaningful minimum, so calling this functions on an empty AABB panics.
    pub fn min(&self) -> Vector3<f32> {
        assert!(!self.is_empty(), "Empty AABB has no minimum corner");
        self.min
    }

    /// Returns the "maximum corner", i.e., the coordinate-wise maximum of the region of space
    /// described by the AABB.
    ///
    /// # Panics
    ///
    /// Empty AABBs have no meaningful maximum, so calling this functions on an empty AABB panics.
    pub fn max(&self) -> Vector3<f32> {
        assert!(!self.is_empty(), "Empty AABB has no maximum corner");
        self.max
    }

    /// Constructs a bounding box by supplying the minimum and maximum coordinates directly.
    ///
    /// Empty AABBs cannot be created through this function, consider using `Aabb::empty()`.
    ///
    /// # Panics
    ///
    /// Panics when the corners aren't really minimum and maximum, i.e. `min[i] > max[i]` in
    /// any dimension `i`.
    pub fn from_corners(min: Vector3<f32>, max: Vector3<f32>) -> Self {
        assert!(min.x <= max.x && min.y <= max.y && min.z <= max.z,
                "max must not be greater than min");
        Aabb {
            min: min,
            max: max,
        }
    }

    /// Constructs an empty AABB which does not contain any points and can be `union`'d with
    /// other AABBs without affecting them.
    pub fn empty() -> Self {
        let inf = vec3(f32::INFINITY, f32::INFINITY, f32::INFINITY);
        Aabb {
            min: inf,
            max: -inf,
        }
    }

    /// Returns `true` if the box is empty, i.e., encompasses no space and not even a single point.
    pub fn is_empty(&self) -> bool {
        let inf = vec3(f32::INFINITY, f32::INFINITY, f32::INFINITY);
        self.min == inf && self.max == -inf
    }

    /// Expand the bounding box to also encompass the point `p`.
    pub fn add_point(&mut self, p: Vector3<f32>) {
        // FIXME f32::min calls fmin, which is robust against NaN but may be
        // unnecessarily slow since it can't be mapped to SSE
        self.min.x = self.min.x.min(p.x);
        self.min.y = self.min.y.min(p.y);
        self.min.z = self.min.z.min(p.z);
        self.max.x = self.max.x.max(p.x);
        self.max.y = self.max.y.max(p.y);
        self.max.z = self.max.z.max(p.z);
    }

    /// Updates the AABB to also encompass `other`.
    /// This is an in-place version of `union`.
    pub fn add_box(&mut self, other: Self) {
        self.min.x = self.min.x.min(other.min.x);
        self.min.y = self.min.y.min(other.min.y);
        self.min.z = self.min.z.min(other.min.z);
        self.max.x = self.max.x.max(other.max.x);
        self.max.y = self.max.y.max(other.max.y);
        self.max.z = self.max.z.max(other.max.z);
    }

    /// Returns the smallest AABB that encompasses both `self` and `other`.
    pub fn union(&self, other: Self) -> Self {
        let mut bb = *self;
        bb.add_box(other);
        bb
    }

    /// Returns the surface area of the box.
    /// This is useful for construction of bounding volume hierarchies.
    ///
    /// # Panics
    ///
    /// Panics if the box is empty.
    /// While it might be possible to meaningfully assign surface area 0 to a non-existing
    /// surface, it's not 100% clear whether this is mathematically kosher and in the context of
    /// BVH construction, needing the surface area of an empty box probably indicates a bug.
    pub fn surface_area(&self) -> f32 {
        assert!(!self.is_empty(), "empty box has no surface area");
        let d = self.max - self.min;
        let area = 2.0 * (d.x * d.y + d.x * d.z + d.y * d.z);
        debug_assert!(area.is_finite());
        area
    }

    /// Returns `true` if the `[t0, t1]` segment of the ray intersects this AABB.
    /// In other words, returns `true` if the ray intersects the AABB and the intersection point
    /// is `r(t) := o + t * d` for `t` in the interval `[t0, t1]`.
    /// (As usual, `o` denotes the ray origin and `d` the ray direction.)
    ///
    /// The code is derived from *Physically based rendering* (cited in the crate documentation)
    /// and implements the algorithm from:
    ///
    /// > Williams, Amy, et al. "An efficient and robust ray-box intersection algorithm."
    /// > ACM SIGGRAPH 2005 Courses.
    pub fn intersects(&self, r: &RayData, t0: f32, t1: f32) -> bool {
        let p = [self.min, self.max];
        let (sgn0, sgn1, sgn2) = (r.sign[0] as usize, r.sign[1] as usize, r.sign[2] as usize);
        let mut tmin = (p[sgn0].x - r.org.x) * r.inv_dir.x;
        let mut tmax = (p[1 - sgn0].x - r.org.x) * r.inv_dir.x;
        let tymin = (p[sgn1].y - r.org.y) * r.inv_dir.y;
        let tymax = (p[1 - sgn1].y - r.org.y) * r.inv_dir.y;
        if tmin > tymax || tymin > tmax {
            return false;
        }
        if tymin > tmin {
            tmin = tymin;
        }
        if tymax < tmax {
            tmax = tymax;
        }
        let tzmin = (p[sgn2].z - r.org.z) * r.inv_dir.z;
        let tzmax = (p[1 - sgn2].z - r.org.z) * r.inv_dir.z;
        if tmin > tzmax || tzmin > tmax {
            return false;
        }
        if tzmin > tmin {
            tmin = tzmin;
        }
        if tzmax < tmax {
            tmax = tzmax;
        }
        tmin < t1 && tmax > t0
    }

    /// Returns the center point of the box.
    ///
    /// # Panics
    ///
    /// Panics if the box is empty.
    pub fn centroid(&self) -> Vector3<f32> {
        assert!(!self.is_empty(), "Empty box has no centroid");
        self.min * 0.5 + self.max * 0.5
    }

    /// Returns the axis along which the AABB is largest.
    ///
    /// In case multiple axes are largest (e.g., because the AABB is empty or a cube), the result is
    /// one of the largest axes, but it is unspecified which one is returned.
    pub fn largest_axis(&self) -> usize {
        let d = self.max - self.min;
        if d.x > d.y && d.x > d.z {
            0
        } else if d.y > d.z {
            1
        } else {
            2
        }
    }
}

/// Precomputed data for ray-AABB intersection calculation.
/// The data computed depends only on the ray and can be used to intersect one ray against
/// many different `Aabb`s.
pub struct RayData {
    sign: [u8; 3],
    org: Vector3<f32>,
    inv_dir: Vector3<f32>,
}

impl RayData {
    /// Prepares data for intersection calculation from ray origin `org` and ray direction
    /// `dir`.
    pub fn new(org: Vector3<f32>, dir: Vector3<f32>) -> Self {
        RayData {
            sign: [(dir.x < 0.0) as u8, (dir.y < 0.0) as u8, (dir.z < 0.0) as u8],
            org: org,
            inv_dir: 1.0 / dir,
        }
    }
}

#[cfg(test)]
mod tests {
    use std::f32;
    use cgmath::{Vector3, vec3};
    use cgmath::prelude::*;
    use super::{Aabb, RayData};

    #[test]
    fn new() {
        let bb = Aabb::new(vec![vec3(1.0, 0.5, -0.8), vec3(-1.0, 0.3, 0.0), vec3(0.7, 0.0, -0.4)]);
        assert_eq!(bb.min(), vec3(-1.0, 0.0, -0.8));
        assert_eq!(bb.max(), vec3(1.0, 0.5, 0.0));
    }

    #[test]
    fn new_empty() {
        let bb = Aabb::new(vec![]);
        assert!(bb.is_empty());
    }

    #[test]
    fn corners_roundtrip() {
        let bb = Aabb::from_corners(vec3(1.0, 2.0, 3.0), vec3(4.0, 5.0, 6.0));
        assert_eq!(bb.min(), vec3(1.0, 2.0, 3.0));
        assert_eq!(bb.max(), vec3(4.0, 5.0, 6.0));
    }

    #[test]
    fn is_empty() {
        let bb = Aabb::empty();
        assert!(bb.is_empty());
        let bb = Aabb::from_corners(Vector3::zero(), Vector3::zero());
        assert!(!bb.is_empty());
    }

    #[test]
    fn add_point() {
        let mut bb = Aabb::empty();
        let x = vec3(1.0, 2.0, 3.0);
        bb.add_point(x);
        assert_eq!(bb.min(), x);
        assert_eq!(bb.max(), x);
        bb.add_point(-x);
        assert_eq!(bb.min(), -x);
        assert_eq!(bb.max(), x);
        bb.add_point(vec3(1.0, 1.0, 1.5));
        assert_eq!(bb.min(), -x);
        assert_eq!(bb.max(), x);
        bb.add_point(vec3(0.0, 0.0, 4.0));
        assert_eq!(bb.min(), -x);
        assert_eq!(bb.max(), vec3(1.0, 2.0, 4.0));
    }

    #[test]
    fn add_box() {
        let mut bb = Aabb::empty();
        bb.add_box(Aabb::from_corners(vec3(-1.0, 0.0, 1.0), vec3(1.0, 0.2, 1.5)));
        assert_eq!(bb.min(), vec3(-1.0, 0.0, 1.0));
        assert_eq!(bb.max(), vec3(1.0, 0.2, 1.5));
        bb.add_box(Aabb::from_corners(vec3(3.0, -0.1, -2.0), vec3(4.0, 1.0, 0.0)));
        assert_eq!(bb.min(), vec3(-1.0, -0.1, -2.0));
        assert_eq!(bb.max(), vec3(4.0, 1.0, 1.5));
        bb.add_box(Aabb::empty());
        assert_eq!(bb.min(), vec3(-1.0, -0.1, -2.0));
        assert_eq!(bb.max(), vec3(4.0, 1.0, 1.5));
    }

    #[test]
    fn union() {
        let bb1 = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(1.0, 1.0, 1.0));
        let bb2 = Aabb::from_corners(vec3(-2.0, -2.0, -3.0), vec3(2.0, 2.0, 2.0));
        assert_eq!(bb1.union(bb2), bb2);
        assert_eq!(bb2.union(bb1), bb2);
        let bb3 = Aabb::from_corners(vec3(5.0, 6.0, 3.0), vec3(6.0, 7.0, 8.0));
        let bb13 = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(6.0, 7.0, 8.0));
        assert_eq!(bb1.union(bb3), bb13);
        assert_eq!(bb3.union(bb1), bb13);
    }

    #[test]
    fn empty_union() {
        let empty = Aabb::empty();
        let bb = Aabb::from_corners(vec3(0.0, 0.0, 0.0), vec3(1.0, 1.0, 1.0));
        assert_eq!(bb.union(empty), bb);
        assert_eq!(empty.union(bb), bb);
    }

    #[test]
    fn surface_area() {
        let bb = Aabb::from_corners(vec3(1.0, 0.5, 2.0), vec3(2.0, 1.0, 2.1));
        // The edge lengths are [1.0, 0.5, 0.1], and Wolfram Alpha computes a surface area of 1.3
        // from that.
        assert!((bb.surface_area() - 1.3).abs() < 1e-6);
        // Mirroring the AABB should not affect the surface area
        let bb2 = Aabb::from_corners(-bb.max(), -bb.min());
        assert_eq!(bb.surface_area(), bb2.surface_area());
    }

    #[test]
    fn intersects_inside() {
        let bb = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(3.0, 2.0, 1.0));
        let ray = RayData::new(vec3(2.0, -1.0, 0.0), vec3(1.0, 0.0, 0.0));
        assert!(bb.intersects(&ray, 0.0, 1e-6));
    }

    #[test]
    fn intersects_outside() {
        let bb = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(3.0, 2.0, 1.0));
        let ray = RayData::new(vec3(9.0, 9.0, 9.0), vec3(-0.33, -0.33, -0.33));
        assert!(bb.intersects(&ray, 0.0, 25.0));
    }

    #[test]
    fn intersects_respects_t0() {
        let bb = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(3.0, 2.0, 1.0));
        let ray = RayData::new(vec3(9.0, 9.0, 9.0), vec3(-0.33, -0.33, -0.33));
        assert!(!bb.intersects(&ray, 50.0, 100.0));
    }

    #[test]
    fn intersects_respects_t1() {
        let bb = Aabb::from_corners(vec3(-1.0, -2.0, -3.0), vec3(3.0, 2.0, 1.0));
        let ray = RayData::new(vec3(9.0, 9.0, 9.0), vec3(-0.33, -0.33, -0.33));
        assert!(!bb.intersects(&ray, 0.0, 24.0));
    }

    #[test]
    fn intersects_miss_in_one_dimension() {
        // The ray "hits" in the x and z dimensions but not in the y dimension.
        // If one inadvertedly takes the *union* of the slab intersection intervals, as an
        // early version of a certain crate did, this would (incorrectly) be considered a hit.
        // (The numbers are ugly because they're taken from a real ray tracer.)
        let bb = Aabb::from_corners(vec3(-1.5569899, -1.543336, -8.447131),
                                    vec3(1.5569899, 1.5433359, -6.033665));
        let r = RayData::new(vec3(0.0, 0.0, 0.0),
                             vec3(-0.17893936, 0.6952105, -0.6961774));
        assert!(!bb.intersects(&r, 0.0, f32::INFINITY));
    }

    #[test]
    fn centroid() {
        let bb = Aabb::from_corners(vec3(-1.0, 0.0, 5.5), vec3(1.0, 3.0, 10.0));
        assert_eq!(bb.centroid(), vec3(0.0, 1.5, 7.75));
    }

    #[test]
    fn largest_axis() {
        let mut bb = Aabb::from_corners(vec3(0.0, 0.0, 0.0), vec3(1.0, 2.0, 3.0));
        assert_eq!(bb.largest_axis(), 2);
        bb.add_point(vec3(0.0, 4.0, 0.0));
        assert_eq!(bb.largest_axis(), 1);
        bb.add_point(vec3(5.0, 0.0, 0.0));
        bb.add_point(vec3(0.0, 0.0, 5.0));
        assert!(bb.largest_axis() == 0 || bb.largest_axis() == 2);
    }

    #[test]
    #[should_panic]
    fn empty_min() {
        Aabb::empty().min();
    }

    #[test]
    #[should_panic]
    fn empty_max() {
        Aabb::empty().max();
    }

    #[test]
    #[should_panic]
    fn flipped_corners() {
        Aabb::from_corners(vec3(1.0, 2.0, 3.0), vec3(3.0, 2.0, 1.0));
    }

    #[test]
    #[should_panic]
    fn empty_corners() {
        let inf = vec3(f32::INFINITY, f32::INFINITY, f32::INFINITY);
        Aabb::from_corners(inf, -inf);
    }

    #[test]
    #[should_panic]
    fn empty_box_centroid() {
        Aabb::empty().centroid();
    }

    #[test]
    #[should_panic]
    fn empty_surface_area() {
        Aabb::empty().surface_area();
    }
}