1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
//! Vulkan Resources
//! 
//! (以下メモ)
//! 
//! ## バッファの作成
//! 
//! [`BufferDesc`](struct.BufferDesc.html)で作成する
//! 
//! ```rust,ignore
//! let buffer = BufferDesc::new(4 * 4 * 3, BufferUsage::VERTEX_BUFFER.transfer_dest()).crete(&device)?;
//! ```
//! 
//! `new`から`create`までにメソッドチェーンを用いて以下のようなバッファの詳細を指定できる。
//! 
//! - [`sparse_binding_opt`](struct.BufferDesc.html#method.sparse_binding_opt): SparseBinding時の許可される挙動を指定する。デフォルトでは"なし"
//!   - [`BufferSparseBinding::Bound`]でSparseBindingによってメモリにバインドできることを示す
//!   - [`BufferSparseBinding::Residency`]で部分的にメモリにバインドできることを示す
//!   - [`BufferSparseBinding::Aliased`]で、バインド先のメモリ範囲が他のバッファに同時に使われる可能性を示す
//!   - [`BufferSparseBinding::Both`]は`Residency`と`Aliased`の両方を示す
//! - [`sharing_queue_families`](struct.BufferDesc.html#method.sharing_queue_families): 複数のキューでアイテムを共有する際に、共有したいキューファミリの番号を指定する。デフォルトは空(占有)
//! 
//! ## イメージの作成
//! 
//! [`ImageDesc`](struct.ImageDesc.html)で作成する
//! 
//! ```rust,ignore
//! let image = ImageDesc::new(&Extent2D(128, 128), VK_FORMAT_R8G8B8A8_UNORM, ImageUsage::SAMPLED.color_attachment(), ImageLayout::General)
//! 	.create(&device)?;
//! ```
//! 
//! [`ImageDesc::new`](struct.ImageDesc.html#method.new)の第一引数に
//! 
//! - `Extent1D`を指定すると1Dテクスチャ
//! - `Extent2D`を指定すると2Dテクスチャ
//! - `Extent3D`を指定すると3Dテクスチャ
//! 
//! を生成するようになる。
//! `new`から`create`までにメソッドチェーンを用いて以下のようなイメージの詳細を指定できる。
//! 
//! - [`sample_counts`](struct.ImageDesc.html#method.sample_counts): イメージの要素ごとのサンプル数を2^nの値(1, 2, 4, 8, 16, 32, 64)で指定する。デフォルトは1。
//!   以下の条件を一つでも満たす場合は1を設定する必要がある。
//!   - 最適タイリング(`VK_IMAGE_TILING_OPTIMAL`)が使われていない(`use_linear_tiling`を併用する場合)
//!   - 2Dテクスチャではない(`new`の第一引数が`Extent2D`でない場合)
//!   - キューブテクスチャである(`flags`に`ImageFlags::CUBE_COMPATIBLE`を指定している場合)
//!   - 指定したフォーマットがカラーアタッチメントもしくは深度/ステンシルアタッチメントとしての利用に対応していない場合
//!     - RGBAフォーマットやDSフォーマットを指定している分には気にする必要はない
//! - [`use_linear_tiling`](struct.ImageDesc.html#method.use_linear_tiling): イメージデータのメモリ上での配列を線形に強制する(デフォルトではデバイス最適な並びを使うようになっている)
//!   - ディスクから読み込んだピクセルデータなどを`map`して流し込む場合はこれが必要
//! - [`array_layers`](struct.ImageDesc.html#method.array_layers): 配列イメージの要素数を指定する。デフォルトは1(配列ではない)
//! - [`mip_levels`](struct.ImageDesc.html#method.mip_levels): ミップマップの最大縮小レベルを指定する。デフォルトは1(ミップマップを使用しない)
//! - [`sharing_queue_families`](struct.ImageDesc.html#method.sharing_queue_families): 複数のキューでアイテムを共有する際に、共有したいキューファミリの番号を指定する。デフォルトは空(占有)
//! - [`flags`](struct.ImageDesc.html#method.flags): [`ImageFlags`](struct.ImageFlags.html)を指定する。デフォルトでは"なし"
//! 
//! ## `BufferUsage`の種類
//! 
//! [`BufferUsage`](struct.BufferUsage.html)はメソッドチェーンを利用してビットフラグを指定する。メソッド名は定数名をすべて小文字にしたもの。
//! 
//! ```rust,ignore
//! BufferUsage::VERTEX_BUFFER.transfer_dest()
//! ```
//! 
//! ### 入力/利用形態系
//! 
//! - `VERTEX_BUFFER`: **頂点バッファ** として頂点入力時に使用できる
//! - `INDEX_BUFFER`: **インデックスバッファ** として頂点入力時に使用できる
//! - `UNIFORM_BUFFER`: **定数バッファ** としてデスクリプタ入力時に使用できる
//! - `STORAGE_BUFFER`: **ストレージバッファ** としてデスクリプタ入力時に使用できる
//!   - 定数バッファより大容量
//! - `UNIFORM_TEXEL_BUFFER`: 1Dのイメージアイテムとして適用可能な定数バッファとしてデスクリプタ入力時に使用できる
//! - `STORAGE_TEXEL_BUFFER`: 1Dのイメージアイテムとして適用可能なストレージバッファとしてデスクリプタ入力時に使用できる
//! - `INDIRECT_BUFFER`: 間接実行コマンドの **引数バッファ** として使用できる
//! 
//! ### 転送系
//! 
//! - `TRANSFER_SRC`: 転送コマンドでソースアイテムとして指定可能であることを示す
//! - `TRANSFER_DEST`: 転送コマンドで対象アイテムとして指定可能であることを示す
//!   - *このバッファに対してクリア、値埋めコマンドを適用したい場合もこれを指定する必要がある*
//! 
//! ## `ImageUsage`の種類
//! 
//! [`ImageUsage`](struct.ImageUsage.html)もメソッドチェーンを利用してビットフラグを指定する。
//! 
//! ```rust,ignore
//! ImageUsage::SAMPLED.color_attachment()
//! ```
//! 
//! ### シェーダ入力系
//! 
//! - `SAMPLED`: シェーダによってサンプル可能であることを示す
//!   - シェーダで **テクスチャ** として使用できるようにする場合はこれ
//! - `INPUT_ATTACHMENT`: シェーダによって入力アタッチメントとしての扱いを受けることができる
//!   - シェーダで入力アタッチメントとして指定したい場合(中間バッファなど)はこれ
//! - `STORAGE`: シェーダのイメージ入力として使用可能であることを示す
//!   - `SAMPLED`との違いは、こちらはサンプラーによるサンプリングを使用できない点
//! 
//! ### 出力系
//! 
//! - `COLOR_ATTACHMENT`: [`Framebuffer`]の出力(カラーもしくはマルチサンプル解決)アイテムとして利用可能であることを示す
//!   - 要するに、 **コマンドで描画した結果を受け取る** ことができる
//!   - プロシージャルテクスチャの作成やオフスクリーンレンダリングの出力として使いたい場合はこれ
//! - `DEPTH_STENCIL_ATTACHMENT`: [`Framebuffer`]での深度/ステンシルバッファとして利用可能であることを示す
//!   - オフスクリーンレンダリングなどで深度バッファが必要な場合はこれ
//! 
//! ### 転送系
//! 
//! - `TRANSFER_SRC`: 転送コマンドでソースアイテムとして指定可能であることを示す
//!   - このテクスチャが何らかのコピー元になる場合はこれ
//! - `TRANSFER_DEST`: 転送コマンドで対象アイテムとして指定可能であることを示す
//!   - このテクスチャが何らかのコピー先になる場合はこれ
//!   - このテクスチャに対してクリア、値埋めコマンドを適用したい場合はこれ
//! 
//! ### その他
//! 
//! - `TRANSIENT_ATTACHMENT`: 色、深度/ステンシル、マルチサンプル解決、および入力アイテムとして指定可能であることを示す
//!   - テクスチャが`VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`が指定された[`DeviceMemory`]にバインドされることを想定している
//!   - パス間の中間バッファなどで、一時的に確保される必要があるバッファに指定するとメモリ使用量が少なくて済むかもしれない?
//! 

use vk::*;
use std::rc::Rc as RefCounter;
use std::ops::Deref;
use {VkHandle, DeviceChild, Device};
#[cfg(feature = "Implements")] use VkResultHandler;
#[cfg(feature = "Implements")] use std::ptr::null;
#[cfg(feature = "Implements")] use std::mem::uninitialized as resv;
use std::borrow::Borrow; use std::mem::transmute;

struct DeviceMemoryCell(VkDeviceMemory, ::Device);
struct BufferCell(VkBuffer, ::Device);
#[cfg(feature = "VK_KHR_swapchain")]
pub enum ImageCell
{
	DeviceChild { obj: VkImage, dev: ::Device, dim: VkImageType, fmt: VkFormat, size: ::Extent3D },
	SwapchainChild { obj: VkImage, owner: ::Swapchain, fmt: VkFormat }
}
#[cfg(not(feature = "VK_KHR_swapchain"))] #[cfg_attr(not(feature = "Implements"), allow(dead_code))]
struct ImageCell { obj: VkImage, dev: ::Device, dim: VkImageType, fmt: VkFormat, size: ::Extent3D }
/// Opaque handle to a device memory object
pub struct DeviceMemory(RefCounter<DeviceMemoryCell>);
/// Opaque handle to a buffer object(constructed via `BufferDesc`)
#[derive(Clone)] pub struct Buffer(RefCounter<BufferCell>);
/// Opaque handle to a image object(constructed via `ImageDesc`)
#[derive(Clone)] pub struct Image(RefCounter<ImageCell>);
/// Opaque handle to a buffer view object
pub struct BufferView(VkBufferView, Buffer);
struct ImageViewCell(VkImageView, Image);
/// Opaque handle to a image view object
#[derive(Clone)]
pub struct ImageView(RefCounter<ImageViewCell>);

impl Deref for BufferView { type Target = Buffer; fn deref(&self) -> &Buffer { &self.1 } }
impl Deref for ImageView { type Target = Image; fn deref(&self) -> &Image { &self.0 .1 } }

#[cfg(feature = "Implements")] DeviceChildCommonDrop! { for DeviceMemoryCell[vkFreeMemory], BufferCell[vkDestroyBuffer] }
#[cfg(feature = "Implements")] impl Drop for ImageCell
{
	fn drop(&mut self)
	{
		#[cfg(feature = "VK_KHR_swapchain")]
		match *self
		{
			ImageCell::DeviceChild { obj, ref dev, .. } => unsafe { vkDestroyImage(dev.native_ptr(), obj, null()); },
			_ => (/* No destroying performed */)
		}
		#[cfg(not(feature = "VK_KHR_swapchain"))]
		unsafe { vkDestroyImage(self.dev.native_ptr(), self.obj, null()); }
	}
}
#[cfg(feature = "Implements")]
impl Drop for BufferView { fn drop(&mut self) { unsafe { vkDestroyBufferView(self.device().native_ptr(), self.native_ptr(), null()) }; } }
#[cfg(feature = "Implements")]
impl Drop for ImageViewCell { fn drop(&mut self) { unsafe { vkDestroyImageView (self.1.device().native_ptr(), self.0, null()) }; } }

impl VkHandle for DeviceMemory { type Handle = VkDeviceMemory; fn native_ptr(&self) -> VkDeviceMemory { self.0 .0 } }
impl VkHandle for Buffer { type Handle = VkBuffer; fn native_ptr(&self) -> VkBuffer { self.0 .0 } }
impl VkHandle for BufferView { type Handle = VkBufferView; fn native_ptr(&self) -> VkBufferView { self.0 } }
impl VkHandle for ImageView  { type Handle = VkImageView;  fn native_ptr(&self) -> VkImageView  { self.0 .0 } }
impl DeviceChild for DeviceMemory { fn device(&self) -> &::Device { &self.0 .1 } }
impl DeviceChild for Buffer { fn device(&self) -> &::Device { &self.0 .1 } }
impl DeviceChild for BufferView { fn device(&self) -> &::Device { self.deref().device() } }
impl DeviceChild for ImageView  { fn device(&self) -> &::Device { self.deref().device() } }

impl VkHandle for Image
{
	type Handle = VkImage;
	#[cfg(feature = "VK_KHR_swapchain")]
	fn native_ptr(&self) -> VkImage
	{
		match *self.0
		{
			ImageCell::DeviceChild { obj, .. } | ImageCell::SwapchainChild { obj, .. } => obj
		}
	}
	#[cfg(not(feature = "VK_KHR_swapchain"))]
	fn native_ptr(&self) -> VkImage { self.0.obj }
}
impl DeviceChild for Image
{
	#[cfg(feature = "VK_KHR_swapchain")]
	fn device(&self) -> &Device
	{
		match *self.0
		{
			ImageCell::DeviceChild { ref dev, .. } => dev,
			ImageCell::SwapchainChild { ref owner, .. } => owner.device()
		}
	}
	#[cfg(not(feature = "VK_KHR_swapchain"))]
	fn device(&self) -> &Device { &self.0.dev }
}

/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl DeviceMemory
{
	/// Allocate GPU memory
	/// # Failures
	/// On failure, this command returns
	///
	/// * `VK_ERROR_OUT_OF_HOST_MEMORY`
	/// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
	/// * `VK_ERROR_TOO_MANY_OBJECTS`
	pub fn allocate(device: &::Device, size: usize, type_index: u32) -> ::Result<Self>
	{
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkAllocateMemory(device.native_ptr(), &VkMemoryAllocateInfo { allocationSize: size as _, memoryTypeIndex: type_index, .. Default::default() },
			::std::ptr::null(), &mut h) }.into_result().map(|_| DeviceMemory(RefCounter::new(DeviceMemoryCell(h, device.clone()))))
	}
}

/// Bitmask specifying allowed usage of a buffer
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct BufferUsage(pub VkBufferUsageFlags);
impl BufferUsage
{
	/// Specifies that the buffer can be used as the source of a transfer command
	pub const TRANSFER_SRC: Self = BufferUsage(VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
	/// Specifies that the buffer can be used as the destination of a transfer command
	pub const TRANSFER_DEST: Self = BufferUsage(VK_BUFFER_USAGE_TRANSFER_DST_BIT);
	/// Specifies that the buffer can be used to create a `BufferView` suitable for
	/// occupying a `DescriptorSet` slot of type `VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER`
	pub const UNIFORM_TEXEL_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT);
	/// Specifies that the buffer can be used to create a `BufferView` suitable for
	/// occupying a `DescriptorSet` slot of type `VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER`
	pub const STORAGE_TEXEL_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT);
	/// Specifies that the buffer can be used in a `DescriptorBufferInfo` suitable for
	/// occupying a `DescriptorSet` slot either of type `VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER` or `VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC`
	pub const UNIFORM_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
	/// Specifies that the buffer can be used in a `DescriptorBufferInfo` suitable for
	/// occupying a `DescriptorSet` slot either of type `VK_DESCRIPTOR_TYPE_STORAGE_BUFFER` or `VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`
	pub const STORAGE_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
	/// Specifies that the buffer is suitable for passing as the `buffer` parameter to `DrawCommandBuffer::bind_index_buffer`
	pub const INDEX_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
	/// Specifies that the buffer is suitable for passing as an element of the `buffers` array to `DrawCommandBuffer::bind_vertex_buffers`
	pub const VERTEX_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
	/// Specifies that the buffer is suitable for passing as the `buffer` parameter to
	/// `DrawCommandBuffer::draw_indirect`, `DrawCommandBuffer::draw_indexed_indirect`, or `ComputeCommandBuffer::dispatch_indirect`
	pub const INDIRECT_BUFFER: Self = BufferUsage(VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT);

	/// Specifies that the buffer can be used as the source of a transfer command
	pub fn transfer_src(&self) -> Self { BufferUsage(self.0 | Self::TRANSFER_SRC.0) }
	/// Specifies that the buffer can be used as the destination of a transfer command
	pub fn transfer_dest(&self) -> Self { BufferUsage(self.0 | Self::TRANSFER_DEST.0) }
	/// Specifies that the buffer can be used to create a `BufferView` suitable for
	/// occupying a `DescriptorSet` slot of type `VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER`
	pub fn uniform_texel_buffer(&self) -> Self { BufferUsage(self.0 | Self::UNIFORM_TEXEL_BUFFER.0) }
	/// Specifies that the buffer can be used to create a `BufferView` suitable for
	/// occupying a `DescriptorSet` slot of type `VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER`
	pub fn storage_texel_buffer(&self) -> Self { BufferUsage(self.0 | Self::STORAGE_TEXEL_BUFFER.0) }
	/// Specifies that the buffer can be used in a `DescriptorBufferInfo` suitable for
	/// occupying a `DescriptorSet` slot either of type `VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER` or `VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC`
	pub fn uniform_buffer(&self) -> Self { BufferUsage(self.0 | Self::UNIFORM_BUFFER.0) }
	/// Specifies that the buffer can be used in a `DescriptorBufferInfo` suitable for
	/// occupying a `DescriptorSet` slot either of type `VK_DESCRIPTOR_TYPE_STORAGE_BUFFER` or `VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC`
	pub fn storage_buffer(&self) -> Self { BufferUsage(self.0 | Self::STORAGE_BUFFER.0) }
	/// Specifies that the buffer is suitable for passing as the `buffer` parameter to `DrawCommandBuffer::bind_index_buffer`
	pub fn index_buffer(&self) -> Self { BufferUsage(self.0 | Self::INDEX_BUFFER.0) }
	/// Specifies that the buffer is suitable for passing as an element of the `buffers` array to `DrawCommandBuffer::bind_vertex_buffers`
	pub fn vertex_buffer(&self) -> Self { BufferUsage(self.0 | Self::VERTEX_BUFFER.0) }
	/// Specifies that the buffer is suitable for passing as the `buffer` parameter to
	/// `DrawCommandBuffer::draw_indirect`, `DrawCommandBuffer::draw_indexed_indirect`, or `ComputeCommandBuffer::dispatch_indirect`
	pub fn indirect_buffer(&self) -> Self { BufferUsage(self.0 | Self::INDIRECT_BUFFER.0) }

	/// Generates a default access type mask
	pub fn default_access_mask(&self) -> VkAccessFlags
	{
		let mut bits = 0;
		if (self.0 & Self::TRANSFER_SRC.0) != 0 { bits |= VK_ACCESS_TRANSFER_READ_BIT; }
		if (self.0 & Self::TRANSFER_DEST.0) != 0 { bits |= VK_ACCESS_TRANSFER_WRITE_BIT; }
		if (self.0 & Self::UNIFORM_TEXEL_BUFFER.0) != 0 { bits |= VK_ACCESS_UNIFORM_READ_BIT; }
		if (self.0 & Self::STORAGE_TEXEL_BUFFER.0) != 0 { bits |= VK_ACCESS_UNIFORM_READ_BIT; }
		if (self.0 & Self::UNIFORM_BUFFER.0) != 0 { bits |= VK_ACCESS_UNIFORM_READ_BIT; }
		if (self.0 & Self::STORAGE_BUFFER.0) != 0 { bits |= VK_ACCESS_UNIFORM_READ_BIT; }
		if (self.0 & Self::INDEX_BUFFER.0) != 0 { bits |= VK_ACCESS_INDEX_READ_BIT; }
		if (self.0 & Self::VERTEX_BUFFER.0) != 0 { bits |= VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; }
		if (self.0 & Self::INDIRECT_BUFFER.0) != 0 { bits |= VK_ACCESS_INDIRECT_COMMAND_READ_BIT; }
		bits
	}
}
/// Bitset specifying additional parameters of a buffer
#[derive(Debug, Clone, Copy, PartialEq, Eq)] #[repr(C)] pub enum BufferSparseBinding
{
	/// No sparse binding features
	None = 0,
	/// the buffer will be backed using sparse memory binding
	Bound = VK_BUFFER_CREATE_SPARSE_BINDING_BIT as _,
	/// the buffer can be partially backed using sparse memory binding.
	Residency = (VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT) as _,
	/// the buffer will be backed using sparse memory binding with memory ranges
	/// that might also simultaneously be backing another buffer (or another portion of the same buffer)
	Aliased = (VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT) as _,
	/// Aliased and Residency
	Both = (VK_BUFFER_CREATE_SPARSE_BINDING_BIT | VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_ALIASED_BIT) as _
}
/// Builder structure specifying the parameters of a newly created buffer object
pub struct BufferDesc { cinfo: VkBufferCreateInfo }
impl BufferDesc
{
	pub fn new(byte_size: usize, usage: BufferUsage) -> Self
	{
		BufferDesc
		{
			cinfo: VkBufferCreateInfo
			{
				size: byte_size as _, usage: usage.0, .. Default::default()
			}
		}
	}
	/// A list of queue families that will access this buffer
	pub fn sharing_queue_families(&mut self, indices: &[u32]) -> &mut Self
	{
		self.cinfo.sharingMode = if indices.is_empty() { VK_SHARING_MODE_EXCLUSIVE } else { VK_SHARING_MODE_CONCURRENT };
		self.cinfo.queueFamilyIndexCount = indices.len() as _;
		self.cinfo.pQueueFamilyIndices = indices.as_ptr();
		self
	}
	/// A bitmask of `BufferSparseBinding` specifying additional parameters of the buffer
	pub fn sparse_binding_opt(&mut self, opt: BufferSparseBinding) -> &mut Self
	{
		self.cinfo.flags = opt as _; self
	}
	/// [feature = "Implements"] Create a new buffer object
	/// # Failure
	/// On failure, this command returns
	///
	/// * `VK_ERROR_OUT_OF_HOST_MEMORY`
	/// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
	#[cfg(feature = "Implements")]
	pub fn create(&self, device: &::Device) -> ::Result<Buffer>
	{
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkCreateBuffer(device.native_ptr(), &self.cinfo, ::std::ptr::null(), &mut h) }
			.into_result().map(|_| Buffer(RefCounter::new(BufferCell(h, device.clone()))))
	}
}

/// Bitmask specifying intended usage of an image
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ImageUsage(pub VkImageUsageFlags);
impl ImageUsage
{
	/// The image can be used as the source of a transfer command
	pub const TRANSFER_SRC: Self = ImageUsage(VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
	/// The image can be used as the destination of a transfer command
	pub const TRANSFER_DEST: Self = ImageUsage(VK_IMAGE_USAGE_TRANSFER_DST_BIT);
	/// The image can be used to create `ImageView` suitable for occupying a `DescriptorSet` slot
	/// either of type `DescriptorType::SampledImage` or `DescriptorType::CombinedImageSampler`, and be sampled by a shader
	pub const SAMPLED: Self = ImageUsage(VK_IMAGE_USAGE_SAMPLED_BIT);
	/// The image can be used to create a `ImageView` suitable for occupying a `DescriptorSet` slot of type `DescriptorType::StorageImage`
	pub const STORAGE: Self = ImageUsage(VK_IMAGE_USAGE_STORAGE_BIT);
	/// The image can be used to create a `ImageView` suitable for use as a color or resolve attachment in a `Framebuffer`
	pub const COLOR_ATTACHMENT: Self = ImageUsage(VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
	/// The image can be used to create a `ImageView` suitable for use as a depth/stencil attachment in a `Framebuffer`
	pub const DEPTH_STENCIL_ATTACHMENT: Self = ImageUsage(VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
	/// The memory bound to this image will have been allocated with the `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`
	/// This bit can be set for any image that can be used to create a `ImageView` suitable for use as a color, resolve, depth/stencil,
	/// or input attachment
	pub const TRANSIENT_ATTACHMENT: Self = ImageUsage(VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT);
	/// The image can be used to create a `ImageView` suitable for occupying `DescriptorSet` slot of type `DescriptorType::InputAttachment`;
	/// be read from a shader as an input attachment; and be used as an input attachment in a framebuffer
	pub const INPUT_ATTACHMENT: Self = ImageUsage(VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT);

	/// The image can be used as the source of a transfer command
	pub fn transfer_src(&self) -> Self { ImageUsage(self.0 | Self::TRANSFER_SRC.0) }
	/// The image can be used as the destination of a transfer command
	pub fn transfer_dest(&self) -> Self { ImageUsage(self.0 | Self::TRANSFER_DEST.0) }
	/// The image can be used to create `ImageView` suitable for occupying a `DescriptorSet` slot
	/// either of type `DescriptorType::SampledImage` or `DescriptorType::CombinedImageSampler`, and be sampled by a shader
	pub fn sampled(&self) -> Self { ImageUsage(self.0 | Self::SAMPLED.0) }
	/// The image can be used to create a `ImageView` suitable for occupying a `DescriptorSet` slot of type `DescriptorType::StorageImage`
	pub fn storage(&self) -> Self { ImageUsage(self.0 | Self::STORAGE.0) }
	/// The image can be used to create a `ImageView` suitable for use as a color or resolve attachment in a `Framebuffer`
	pub fn color_attachment(&self) -> Self { ImageUsage(self.0 | Self::COLOR_ATTACHMENT.0) }
	/// The image can be used to create a `ImageView` suitable for use as a depth/stencil attachment in a `Framebuffer`
	pub fn depth_stencil_attachment(&self) -> Self { ImageUsage(self.0 | Self::DEPTH_STENCIL_ATTACHMENT.0) }
	/// The memory bound to this image will have been allocated with the `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`
	/// This bit can be set for any image that can be used to create a `ImageView` suitable for use as a color, resolve, depth/stencil,
	/// or input attachment
	pub fn transient_attachment(&self) -> Self { ImageUsage(self.0 | Self::TRANSIENT_ATTACHMENT.0) }
	/// The image can be used to create a `ImageView` suitable for occupying `DescriptorSet` slot of type `DescriptorType::InputAttachment`;
	/// be read from a shader as an input attachment; and be used as an input attachment in a framebuffer
	pub fn input_attachment(&self) -> Self { ImageUsage(self.0 | Self::INPUT_ATTACHMENT.0) }
}
/// Bitmask specifying additional parameters of an image
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ImageFlags(pub VkImageCreateFlags);
impl ImageFlags
{
	/// Empty bits
	pub const EMPTY: Self = ImageFlags(0);
	/// The image will be backed using sparse memory binding
	pub const SPARSE_BINDING: Self = ImageFlags(VK_IMAGE_CREATE_SPARSE_BINDING_BIT);
	/// The image can be partially backed using sparse memory binding. This bit is with `SPARSE_BINDING` implicitly
	pub const SPARSE_RESIDENCY: Self = ImageFlags(VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT);
	/// The image will be backed using sparse memory binding with memory ranges
	/// that might also simultaneously be backing another image. This bit is with `SPARSE_BINDING` implicitly
	pub const SPARSE_ALIASED: Self = ImageFlags(VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_ALIASED_BIT);
	/// The image can be used to create a `ImageView` with a different format from the image
	pub const MUTABLE_FORMAT: Self = ImageFlags(VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT);
	/// The image can be used to create a `ImageView` of type `ImageViewType::Cube` or `ImageViewType::CubeArray`
	pub const CUBE_COMPATIBLE: Self = ImageFlags(VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT);

	/// The image will be backed using sparse memory binding
	pub fn sparse_binding(&self) -> Self { ImageFlags(self.0 | Self::SPARSE_BINDING.0) }
	/// The image can be partially backed using sparse memory binding. This bit is with `SPARSE_BINDING` implicitly
	pub fn sparse_residency(&self) -> Self { ImageFlags(self.0 | Self::SPARSE_RESIDENCY.0) }
	/// The image will be backed using sparse memory binding with memory ranges
	/// that might also simultaneously be backing another image. This bit is with `SPARSE_BINDING` implicitly
	pub fn sparse_aliased(&self) -> Self { ImageFlags(self.0 | Self::SPARSE_ALIASED.0) }
	/// The image can be used to create a `ImageView` with a different format from the image
	pub fn mutable_format(&self) -> Self { ImageFlags(self.0 | Self::MUTABLE_FORMAT.0) }
	/// The image can be used to create a `ImageView` of type `ImageViewType::Cube` or `ImageViewType::CubeArray`
	pub fn cube_compatible(&self) -> Self { ImageFlags(self.0 | Self::CUBE_COMPATIBLE.0) }
}
/// Builder structure specifying the parameters of a newly created image object
#[derive(Debug, Clone, PartialEq, Eq)] pub struct ImageDesc(VkImageCreateInfo);
impl ImageDesc
{
	pub fn new<Size: ImageSize>(size: &Size, format: VkFormat, usage: ImageUsage, initial_layout: ImageLayout) -> Self
	{
		ImageDesc(VkImageCreateInfo
		{
			imageType: Size::DIMENSION, extent: size.conv(), format, usage: usage.0,
			mipLevels: 1, arrayLayers:1, samples: 1, initialLayout: initial_layout as _,
			.. Default::default()
		})
	}
	/// A list of queue families that will access this image,
	/// or an empty list if no queue families can access this image simultaneously
	pub fn sharing_queue_families(&mut self, indices: &[u32]) -> &mut Self
	{
		self.0.sharingMode = if indices.is_empty() { VK_SHARING_MODE_EXCLUSIVE } else { VK_SHARING_MODE_CONCURRENT };
		self.0.queueFamilyIndexCount = indices.len() as _;
		self.0.pQueueFamilyIndices = indices.as_ptr();
		self
	}
	/// The number of sub-data element samples in the image  
	/// bitmask of 1(default), 2, 4, 8, 16, 32, 64
	pub fn sample_counts(&mut self, count_bits: u32) -> &mut Self
	{
		self.0.samples = count_bits; self
	}
	/// Sets the tiling arrangement of the data elements in memory as "linear tiling"  
	/// default: optimal tiling
	pub fn use_linear_tiling(&mut self) -> &mut Self
	{
		self.0.tiling = VK_IMAGE_TILING_LINEAR; self
	}
	/// A bitmask of `ImageFlags`describing additional parameters of the image  
	/// default: none
	pub fn flags(&mut self, opt: ImageFlags) -> &mut Self
	{
		self.0.flags = opt.0; self
	}
	/// The number of layers in the image  
	/// default: 1
	pub fn array_layers(&mut self, layers: u32) -> &mut Self { self.0.arrayLayers = layers; self }
	/// The number of levels of detail available for minified sampling of the image  
	/// default: 1
	pub fn mip_levels(&mut self, levels: u32) -> &mut Self { self.0.mipLevels = levels; self }
}

/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl ImageDesc
{
	/// Create an image
	#[cfg(not(feature = "VK_KHR_swapchain"))]
	pub fn create(&self, device: &::Device) -> ::Result<Image>
	{
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkCreateImage(device.native_ptr(), &self.0, ::std::ptr::null(), &mut h) }
			.into_result().map(|_| Image(RefCounter::new(ImageCell
			{
				obj: h, dev: device.clone(), dim: self.0.imageType, fmt: self.0.format,
				size: ::Extent3D(self.0.extent.width, self.0.extent.height, self.0.extent.depth)
			})))
	}
	/// Create an image
	#[cfg(feature = "VK_KHR_swapchain")]
	pub fn create(&self, device: &::Device) -> ::Result<Image>
	{
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkCreateImage(device.native_ptr(), &self.0, ::std::ptr::null(), &mut h) }
			.into_result().map(|_| Image(RefCounter::new(ImageCell::DeviceChild
			{
				obj: h, dev: device.clone(), dim: self.0.imageType, fmt: self.0.format,
				size: ::Extent3D(self.0.extent.width, self.0.extent.height, self.0.extent.depth)
			})))
	}
}

impl Image
{
	/// The pixel format of an image
	pub fn format(&self) -> VkFormat
	{
		#[cfg(feature = "VK_KHR_swapchain")]
		match *self.0 { ImageCell::DeviceChild { fmt, .. } | ImageCell::SwapchainChild { fmt, .. } => fmt }
		#[cfg(not(feature = "VK_KHR_swapchain"))]
		{ self.0.fmt }
	}
	/// The size of an image
	pub fn size(&self) -> &::Extent3D
	{
		#[cfg(feature = "VK_KHR_swapchain")]
		match *self.0
		{
			ImageCell::DeviceChild { ref size, .. } => size,
			ImageCell::SwapchainChild { ref owner, .. } => owner.size()
		}
		#[cfg(not(feature = "VK_KHR_swapchain"))]
		&self.0.size
	}
	#[cfg(feature = "Implements")]
	fn dimension(&self) -> VkImageViewType
	{
		#[cfg(feature = "VK_KHR_swapchain")]
		let dim = match *self.0 { ImageCell::DeviceChild { dim, .. } => dim, ImageCell::SwapchainChild { .. } => VK_IMAGE_TYPE_2D };
		#[cfg(not(feature = "VK_KHR_swapchain"))]
		let dim = self.0.dim;

		match dim
		{
			VK_IMAGE_TYPE_1D => VK_IMAGE_VIEW_TYPE_1D,
			VK_IMAGE_TYPE_2D => VK_IMAGE_VIEW_TYPE_2D,
			VK_IMAGE_TYPE_3D => VK_IMAGE_VIEW_TYPE_3D,
			_ => unreachable!()
		}
	}
}

/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl Buffer
{
	/// Create a buffer view
	pub fn create_view(&self, format: VkFormat, range: ::std::ops::Range<u64>) -> ::Result<BufferView>
	{
		let cinfo = VkBufferViewCreateInfo
		{
			buffer: self.native_ptr(), format, offset: range.start, range: range.end - range.start, .. Default::default()
		};
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkCreateBufferView(self.device().native_ptr(), &cinfo, ::std::ptr::null(), &mut h) }
			.into_result().map(|_| BufferView(h, self.clone()))
	}
}
/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl Image
{
	/// Create an image view
	pub fn create_view(&self, format: Option<VkFormat>, vtype: Option<VkImageViewType>,
		cmap: &ComponentMapping, subresource_range: &ImageSubresourceRange) -> ::Result<ImageView>
	{
		let (format, vtype) = (format.unwrap_or(self.format()), vtype.unwrap_or(self.dimension()));
		let cinfo = VkImageViewCreateInfo
		{
			image: self.native_ptr(), viewType: vtype, format, components: unsafe { ::std::mem::transmute_copy(cmap) },
			subresourceRange: subresource_range.0.clone(), .. Default::default()
		};
		let mut h = VK_NULL_HANDLE as _;
		unsafe { vkCreateImageView(self.device().native_ptr(), &cinfo, ::std::ptr::null(), &mut h) }
			.into_result().map(|_| ImageView(RefCounter::new(ImageViewCell(h, self.clone()))))
	}
	/// Retrieve information about an image subresource  
	/// Subresource: (`aspect`, `mipLevel`, `arrayLayer`)
	pub fn image_subresource_layout(&self, subres_aspect: AspectMask, subres_mip_level: u32, subres_array_layer: u32) -> VkSubresourceLayout
	{
		let mut s = unsafe { resv() };
		let subres = VkImageSubresource { aspectMask: subres_aspect.0, mipLevel: subres_mip_level, arrayLayer: subres_array_layer };
		unsafe { vkGetImageSubresourceLayout(self.device().native_ptr(), self.native_ptr(), &subres, &mut s) }; s
	}
}

/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl DeviceMemory
{
	/// Map a memory object into application address space
	/// # Failure
	/// On failure, this command returns
	///
	/// * `VK_ERROR_OUT_OF_HOST_MEMORY`
	/// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
	/// * `VK_ERROR_MEMORY_MAP_FAILED`
	pub fn map(&self, range: ::std::ops::Range<usize>) -> ::Result<MappedMemoryRange>
	{
		let mut p = ::std::ptr::null_mut();
		unsafe { vkMapMemory(self.device().native_ptr(), self.native_ptr(), range.start as _, (range.end - range.start) as _,
			0, &mut p) }.into_result().map(|_| MappedMemoryRange(self, p as *mut _, range.start as _ .. range.end as _))
	}
	/// Unmap a previously mapped memory object
	/// # Safety
	/// Caller must guarantee that there is no `MappedMemoryRange` alives.  
	/// Accessing the mapped memory after this call has undefined behavior
	pub unsafe fn unmap(&self)
	{
		vkUnmapMemory(self.0 .1.native_ptr(), self.native_ptr());
	}
	/// Query the current commitment for a `DeviceMemory`
	pub fn commitment_bytes(&self) -> VkDeviceSize
	{
		let mut b = 0;
		unsafe { vkGetDeviceMemoryCommitment(self.device().native_ptr(), self.native_ptr(), &mut b) }; b
	}
}

#[cfg(feature = "Implements")]
impl Device
{
	/// Multiple Binding for Buffers
	pub fn bind_buffers(&self, bounds: &[(&Buffer, &DeviceMemory, VkDeviceSize)]) -> ::Result<()>
	{
		let infos: Vec<_> = bounds.iter().map(|&(b, m, offs)| VkBindBufferMemoryInfo
		{
			buffer: b.native_ptr(), memory: m.native_ptr(), memoryOffset: offs, .. Default::default()
		}).collect();
		unsafe
		{
			vkBindBufferMemory2(self.native_ptr(), infos.len() as _, infos.as_ptr()).into_result()
		}
	}
	/// Multiple Binding for Images
	pub fn bind_images(&self, bounds: &[(&Image, &DeviceMemory, VkDeviceSize)]) -> ::Result<()>
	{
		let infos: Vec<_> = bounds.iter().map(|&(i, m, offs)| VkBindImageMemoryInfo
		{
			image: i.native_ptr(), memory: m.native_ptr(), memoryOffset: offs, .. Default::default()
		}).collect();
		unsafe
		{
			vkBindImageMemory2(self.native_ptr(), infos.len() as _, infos.as_ptr()).into_result()
		}
	}
	/// Multiple Binding for both resources
	pub fn bind_resources(&self, buf_bounds: &[(&Buffer, &DeviceMemory, VkDeviceSize)],
		img_bounds: &[(&Image, &DeviceMemory, VkDeviceSize)]) -> ::Result<()>
	{
		// 必ず両方実行されるようにする
		self.bind_buffers(buf_bounds).and(self.bind_images(img_bounds))
	}
}

/// [feature = "Implements"] Common operations for memory bound objects
#[cfg(feature = "Implements")]
pub trait MemoryBound
{
	/// Returns the memory requirements for specified Vulkan object
	fn requirements(&self) -> VkMemoryRequirements;
	/// Bind device memory to the object
	/// # Failure
	/// On failure, this command returns
	///
	/// * `VK_ERROR_OUT_OF_HOST_MEMORY`
	/// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
	fn bind(&self, memory: &DeviceMemory, offset: usize) -> ::Result<()>;
}
#[cfg(feature = "Implements")]
impl MemoryBound for Buffer
{
	fn requirements(&self) -> VkMemoryRequirements
	{
		let mut p = unsafe { resv() };
		unsafe { vkGetBufferMemoryRequirements(self.device().native_ptr(), self.native_ptr(), &mut p) }; p
	}
	fn bind(&self, memory: &DeviceMemory, offset: usize) -> ::Result<()>
	{
		unsafe { vkBindBufferMemory(self.device().native_ptr(), self.native_ptr(), memory.native_ptr(), offset as _) }.into_result()
	}
}
#[cfg(feature = "Implements")]
impl MemoryBound for Image
{
	fn requirements(&self) -> VkMemoryRequirements
	{
		let mut p = unsafe { resv() };
		unsafe { vkGetImageMemoryRequirements(self.device().native_ptr(), self.native_ptr(), &mut p) }; p
	}
	fn bind(&self, memory: &DeviceMemory, offset: usize) -> ::Result<()>
	{
		unsafe { vkBindImageMemory(self.device().native_ptr(), self.native_ptr(), memory.native_ptr(), offset as _) }.into_result()
	}
}
/// Following methods are enabled with [feature = "Implements"]
#[cfg(feature = "Implements")]
impl Image
{
	/// Query the memory requirements for a sparse image
	pub fn sparse_requirements(&self) -> Vec<VkSparseImageMemoryRequirements>
	{
		let mut n = 0;
		unsafe { vkGetImageSparseMemoryRequirements(self.device().native_ptr(), self.native_ptr(), &mut n, ::std::ptr::null_mut()) };
		let mut v = Vec::with_capacity(n as _); unsafe { v.set_len(n as _) };
		unsafe { vkGetImageSparseMemoryRequirements(self.device().native_ptr(), self.native_ptr(), &mut n, v.as_mut_ptr()) };
		v
	}
}

/// Image Dimension by corresponding extent type
pub trait ImageSize
{
	const DIMENSION: VkImageType;
	fn conv(&self) -> VkExtent3D;
}
impl ImageSize for ::Extent1D
{
	const DIMENSION: VkImageType = VK_IMAGE_TYPE_1D;
	fn conv(&self) -> VkExtent3D { VkExtent3D { width: self.0, height: 1, depth: 1 } }
}
impl ImageSize for ::Extent2D
{
	const DIMENSION: VkImageType = VK_IMAGE_TYPE_2D;
	fn conv(&self) -> VkExtent3D { VkExtent3D { width: self.0, height: self.1, depth: 1 } }
}
impl ImageSize for ::Extent3D
{
	const DIMENSION: VkImageType = VK_IMAGE_TYPE_3D;
	fn conv(&self) -> VkExtent3D { AsRef::<VkExtent3D>::as_ref(self).clone() }
}

/// Specifies the block of mapped memory in a `DeviceMemory`
pub struct MappedMemoryRange<'m>(&'m DeviceMemory, *mut u8, ::std::ops::Range<VkDeviceSize>);
impl<'m> MappedMemoryRange<'m>
{
	/// Get a reference in mapped memory with byte offsets
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn get<T>(&self, offset: usize) -> &T
	{
		::std::mem::transmute(self.1.offset(offset as _))
	}
	/// Get a mutable reference in mapped memory with byte offsets
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn get_mut<T>(&self, offset: usize) -> &mut T
	{
		::std::mem::transmute(self.1.offset(offset as _))
	}
	/// Get a slice in mapped memory with byte offsets
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn slice<T>(&self, offset: usize, count: usize) -> &[T]
	{
		::std::slice::from_raw_parts(self.1.offset(offset as _) as *const T, count)
	}
	/// Get a mutable slice in mapped memory with byte offsets
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn slice_mut<T>(&self, offset: usize, count: usize) -> &mut [T]
	{
		::std::slice::from_raw_parts_mut(self.1.offset(offset as _) as *mut T, count)
	}
	/// Clone data from slice at the specified offset in mapped memory.
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn clone_from_slice_at<T: Clone>(&self, offset: usize, src: &[T])
	{
		self.slice_mut(offset, src.len()).clone_from_slice(src);
	}
	/// Clone data from slice at the specified offset in mapped memory.
	/// # Safety
	/// Caller must guarantee that the pointer and its alignment are valid
	pub unsafe fn clone_at<T: Clone>(&self, offset: usize, src: &T)
	{
		*self.get_mut(offset) = src.clone();
	}
	/// Flushes the memory range manually. Returns a structure for flush operation
	pub fn manual_flush(self) -> VkMappedMemoryRange
	{
		let (m, r) = (self.0 .0 .0, self.2.clone()); ::std::mem::forget(self);
		VkMappedMemoryRange
		{
			offset: r.start, size: r.end - r.start, memory: m, .. Default::default()
		}
	}
}
#[cfg(feature = "Implements")]
impl<'m> Drop for MappedMemoryRange<'m>
{
	fn drop(&mut self)
	{
		unsafe { vkFlushMappedMemoryRanges(self.0 .0 .1.native_ptr(), 1, &::std::mem::replace(self, resv()).manual_flush()) }
			.into_result().unwrap();
	}
}

/// Following methods are enabled with [feature = "Implements" and feature = "VK_KHR_swapchain"]
#[cfg(all(feature = "Implements", feature = "VK_KHR_swapchain"))]
impl ::Swapchain
{
	/// Obtain the array of presentable images associated with a swapchain
	/// # Failures
	/// On failure, this command returns
	///
	/// * `VK_ERROR_OUT_OF_HOST_MEMORY`
	/// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
	pub fn get_images(&self) -> ::Result<Vec<Image>>
	{
		let mut n = 0;
		unsafe { vkGetSwapchainImagesKHR(self.device().native_ptr(), self.native_ptr(), &mut n, ::std::ptr::null_mut()) }.into_result()?;
		let mut v = Vec::with_capacity(n as _); unsafe { v.set_len(n as _) };
		unsafe { vkGetSwapchainImagesKHR(self.device().native_ptr(), self.native_ptr(), &mut n, v.as_mut_ptr()) }.into_result()
			.map(|_| v.into_iter().map(|r| Image(RefCounter::new(ImageCell::SwapchainChild { obj: r, owner: self.clone(), fmt: self.format() }))).collect())
	}
}

/// Layouts of image and image subresources
#[repr(u32)] #[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum ImageLayout
{
	/// does not support device access
	Undefined = VK_IMAGE_LAYOUT_UNDEFINED as _,
	/// does not support device access. host can be written to this memory immediately
	Preinitialized = VK_IMAGE_LAYOUT_PREINITIALIZED as _,
	/// supports all types of device access
	General = VK_IMAGE_LAYOUT_GENERAL as _,
	/// must only be used as a color or resolve attachment in a `Framebuffer`
	ColorAttachmentOpt = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL as _,
	/// must only be used as a depth/stencil attachment in a `Framebuffer`
	DepthStencilAttachmentOpt = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL as _,
	/// must only be used as a read-only depth/stencil attachment in a `Framebuffer`
	/// and/or as a read-only image in a shader (which can be read as a sampled image,
	/// combined image/sampler and/or input attachment).
	DepthStencilReadOnlyOpt = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL as _,
	/// must only be used as a read-only image in a shader (which can be read as a sampled image,
	/// combined image/sampler and/or input attachment).
	ShaderReadOnlyOpt = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL as _,
	/// must only be used as a source image of a transfer command
	TransferSrcOpt = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL as _,
	/// must only be used as a destination image of a transfer command
	TransferDestOpt = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL as _,
	/// must only be used for presenting a swapchain image for display
	#[cfg(feature = "VK_KHR_swapchain")]
	PresentSrc = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR as _
}
impl ImageLayout
{
	/// Commonly used access types with the layout
	pub fn default_access_mask(&self) -> VkAccessFlags
	{
		match *self
		{
			ImageLayout::Undefined | ImageLayout::Preinitialized => 0,
			ImageLayout::General => VK_ACCESS_MEMORY_READ_BIT,
			ImageLayout::ColorAttachmentOpt => VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
			ImageLayout::DepthStencilAttachmentOpt => VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
			ImageLayout::DepthStencilReadOnlyOpt => VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
			ImageLayout::ShaderReadOnlyOpt => VK_ACCESS_SHADER_READ_BIT,
			ImageLayout::TransferSrcOpt => VK_ACCESS_TRANSFER_READ_BIT,
			ImageLayout::TransferDestOpt => VK_ACCESS_TRANSFER_WRITE_BIT,
			#[cfg(feature = "VK_KHR_swapchain")]
			ImageLayout::PresentSrc => VK_ACCESS_MEMORY_READ_BIT
		}
	}
}

/// Structure specifying a color component mapping
#[repr(C)] #[derive(Debug, Clone, PartialEq, Eq)]
pub struct ComponentMapping(pub ComponentSwizzle, pub ComponentSwizzle, pub ComponentSwizzle, pub ComponentSwizzle);
/// Specify how a component is swizzled
#[repr(u32)] #[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum ComponentSwizzle
{
	/// the component is set to the identity swizzle
	Identity = VK_COMPONENT_SWIZZLE_IDENTITY as _,
	/// the component is set to zero
	Zero = VK_COMPONENT_SWIZZLE_ZERO as _,
	/// the component is set to either 1 or 1.0, depending on whether
	/// the type of the image view format is integer of floating-pointer respectively
	One = VK_COMPONENT_SWIZZLE_ONE as _,
	/// the component is set to the value of the R component of the image
	R = VK_COMPONENT_SWIZZLE_R as _,
	/// the component is set to the value of the G component of the image
	G = VK_COMPONENT_SWIZZLE_G as _,
	/// the component is set to the value of the B component of the image
	B = VK_COMPONENT_SWIZZLE_B as _,
	/// the component is set to the value of the A component of the image
	A = VK_COMPONENT_SWIZZLE_A as _
}
impl Default for ComponentMapping { fn default() -> Self { Self::all(ComponentSwizzle::Identity) } }
impl ComponentMapping
{
	/// Set same value to all component
	pub fn all(s: ComponentSwizzle) -> Self { ComponentMapping(s, s, s, s) }
	/// Set 2 values with repeating
	pub fn set2(a: ComponentSwizzle, b: ComponentSwizzle) -> Self { ComponentMapping(a, b, a, b) }
}
/// Bitmask specifying which aspects of an image are included in a view
#[derive(Debug, Clone, PartialEq, Eq, Copy)] #[repr(C)]
pub struct AspectMask(pub VkImageAspectFlags);
impl AspectMask
{
	/// The color aspect
	pub const COLOR: Self = AspectMask(VK_IMAGE_ASPECT_COLOR_BIT);
	/// The depth aspect
	pub const DEPTH: Self = AspectMask(VK_IMAGE_ASPECT_DEPTH_BIT);
	/// The stencil aspect
	pub const STENCIL: Self = AspectMask(VK_IMAGE_ASPECT_STENCIL_BIT);
	/// The metadata aspect, used for sparse sparse resource operations
	pub const METADATA: Self = AspectMask(VK_IMAGE_ASPECT_METADATA_BIT);

	/// The color aspect
	pub fn color(&self) -> Self { AspectMask(self.0 | Self::COLOR.0) }
	/// The depth aspect
	pub fn depth(&self) -> Self { AspectMask(self.0 | Self::DEPTH.0) }
	/// The stencil aspect
	pub fn stencil(&self) -> Self { AspectMask(self.0 | Self::STENCIL.0) }
	/// The metadata aspect, used for sparse sparse resource oeprations
	pub fn metadata(&self) -> Self { AspectMask(self.0 | Self::METADATA.0) }
}

/// Structure specifying a image subresource range
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ImageSubresourceRange(VkImageSubresourceRange);
impl Borrow<VkImageSubresourceRange> for ImageSubresourceRange
{
	fn borrow(&self) -> &VkImageSubresourceRange { unsafe { transmute(self) } }
}
impl ImageSubresourceRange
{
	/// Specify color subresource
	pub fn color<Levels, Layers>(mip_levels: Levels, array_layers: Layers) -> Self where
		Levels: ::AnalogNumRange<u32>, Layers: ::AnalogNumRange<u32>
	{
		ImageSubresourceRange(VkImageSubresourceRange
		{
			aspectMask: AspectMask::COLOR.0,
			baseMipLevel: mip_levels.begin(), baseArrayLayer: array_layers.begin(),
			levelCount: mip_levels.count(), layerCount: array_layers.count()
		})
	}
	/// Specify stencil subresource
	pub fn stencil<Levels, Layers>(mip_levels: Levels, array_layers: Layers) -> Self where
		Levels: ::AnalogNumRange<u32>, Layers: ::AnalogNumRange<u32>
	{
		ImageSubresourceRange(VkImageSubresourceRange
		{
			aspectMask: AspectMask::STENCIL.0,
			baseMipLevel: mip_levels.begin(), baseArrayLayer: array_layers.begin(),
			levelCount: mip_levels.count(), layerCount: array_layers.count()
		})
	}
}

/// Opaque handle to a sampler object
pub struct Sampler(VkSampler, ::Device);
#[cfg(feature = "Implements")] DeviceChildCommonDrop!{ for Sampler[vkDestroySampler] }

impl VkHandle for Sampler { type Handle = VkSampler; fn native_ptr(&self) -> VkSampler { self.0 } }
impl DeviceChild for Sampler { fn device(&self) -> &::Device { &self.1 } }

/// Specify behavior of sampling with texture coordinates outside an image
#[repr(C)] #[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum AddressingMode
{
    /// The repeat wrap mode
    Repeat = VK_SAMPLER_ADDRESS_MODE_REPEAT as _,
    /// The mirrored repeat wrap mode
    MirroredRepeat = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT as _,
    /// The clamp to edge wrap mode
    ClampToEdge = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE as _,
    /// The clamp to border wrap mode
    ClampToBorder = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER as _,
    /// The mirror clamp to edge wrap mode
    #[cfg(feature = "VK_KHR_mirror_clamp_to_edge")]
    MirrorClampToEdge = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE as _
}
/// Specify filter used for texture lookups
#[repr(C)] #[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum FilterMode
{
    /// Nearest filtering
    Nearest = VK_FILTER_NEAREST as _,
    /// Linear filtering
    Linear = VK_FILTER_LINEAR as _
}
/// Specify mipmap mode used for texture lookups
#[repr(C)] #[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum MipmapFilterMode
{
    /// Nearest filtering
    Nearest = VK_SAMPLER_MIPMAP_MODE_NEAREST as _,
    /// Linear filtering
    Linear = VK_SAMPLER_MIPMAP_MODE_LINEAR as _
}
/// Specify border color used for texture lookups
#[repr(C)] #[derive(Debug, Clone, PartialEq, Eq, Copy)]
pub enum BorderColor
{
    /// A transparent, floating-point format, black color
    TransparentBlackF = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK as _,
    /// A transparent, integer format, black color
    TransparentBlackI = VK_BORDER_COLOR_INT_TRANSPARENT_BLACK as _,
    /// An opaque, floating-point format, black color
    OpaqueBlackF = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK as _,
    /// An opaque, integer format, black color
    OpaqueBlackI = VK_BORDER_COLOR_INT_OPAQUE_BLACK as _,
    /// An opaque, floating-point format, white color
    OpaqueWhiteF = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE as _,
    /// An opaque, integer format, white color
    OpaqueWhiteI = VK_BORDER_COLOR_INT_OPAQUE_WHITE as _
}
/// Builder object for constructing the sampler object
pub struct SamplerBuilder(VkSamplerCreateInfo);
impl SamplerBuilder
{
    pub fn new() -> Self
    {
        SamplerBuilder(VkSamplerCreateInfo
        {
            magFilter: FilterMode::Linear as _, minFilter: FilterMode::Linear as _, mipmapMode: MipmapFilterMode::Linear as _,
            addressModeU: AddressingMode::Repeat as _, addressModeV: AddressingMode::Repeat as _, addressModeW: AddressingMode::Repeat as _,
            mipLodBias: 0.0, anisotropyEnable: false as _, compareEnable: false as _, compareOp: ::CompareOp::Always as _,
            minLod: 0.0, maxLod: 0.0, borderColor: BorderColor::TransparentBlackF as _, unnormalizedCoordinates: false as _,
            .. Default::default()
        })
    }
    /// The magnification and the minification filters to apply to lookups.  
    /// Default: Magnification=`FilterMode::Linear`, Minification=`FilterMode::Linear`
    pub fn filter(&mut self, mag: FilterMode, min: FilterMode) -> &mut Self
    {
        self.0.magFilter = mag as _; self.0.minFilter = min as _; self
    }
    /// The mipmap filter to apply to lookups.  
	/// Default: `MipmapFilterMode::Linear`
    pub fn mip_filter(&mut self, f: MipmapFilterMode) -> &mut Self
    {
        self.0.mipmapMode = f as _; self
    }
    /// The addressing mode for outside [0..1] range for U, V and W coordinates.  
    /// Default: U=`AddressingMode::Repeat`, V=`AddressinMode::Repeat`, W=`AddressingMode::Repeat`
    pub fn addressing(&mut self, u: AddressingMode, v: AddressingMode, w: AddressingMode) -> &mut Self
    {
        self.0.addressModeU = u as _; self.0.addressModeV = v as _; self.0.addressModeW = w as _; self
    }
    /// The bias to be added to mipmap LOD calculation and bias provided by image sampling functions in SPIR-V,
    /// as described in the `Level-of-Detail Operation` section in Vulkan Specification.  
    /// Default: 0.0
    pub fn lod_bias(&mut self, bias: f32) -> &mut Self { self.0.mipLodBias = bias; self }
    /// The anisotropy value clamp. Specifying `None` switches off the anisotropic filtering  
    /// Default: `None`
    pub fn max_anisotropy(&mut self, level: Option<f32>) -> &mut Self
    {
        self.0.anisotropyEnable = level.is_some() as _;
        self.0.maxAnisotropy = level.unwrap_or_default(); self
    }
    /// The comparison function to apply to fetched data before filtering
    /// as described in the `Depth Compare Operation` section in Vulkan Specification.
    /// Specifying `None` switches off the comparison against a reference value during lookups.  
    /// Default: `None`
    pub fn comparison(&mut self, op: Option<::CompareOp>) -> &mut Self
    {
        self.0.compareEnable = op.is_some() as _;
        self.0.compareOp = op.unwrap_or(::CompareOp::Always) as _; self
    }
    /// The values used to clamp the computed level-of-detail value,
    /// as described in the `Level-of-Detail Operation` section in Vulkan Specification.  
    /// Default: min_lod=0.0, max_lod=0.0
    /// # Panics
    /// `max_lod` must be greater than or equal to `min_lod`
    pub fn lod_clamp(&mut self, min_lod: f32, max_lod: f32) -> &mut Self
    {
        assert!(max_lod >= min_lod);
        self.0.minLod = min_lod; self.0.maxLod = max_lod; self
    }
    /// Whether to use unnormalized or normalized texel coordinates to address texels of the image.  
    /// Default: `false`
    /// # Safety
    /// User must meet the constraints as described in the "Valid Usage" section in the `VkSamplerCreateInfo` manual page
    pub unsafe fn unnormalized_coordinates(&mut self, use_unnormalized: bool) -> &mut Self
    {
        self.0.unnormalizedCoordinates = use_unnormalized as _; self
    }

    /// [feature = "Implements"] Create a new sampler object
    /// # Failures
    /// On failure, this command returns
	/// 
    /// * `VK_ERROR_OUT_OF_HOST_MEMORY`
    /// * `VK_ERROR_OUT_OF_DEVICE_MEMORY`
    /// * `VK_ERROR_TOO_MANY_OBJECTS`
    #[cfg(feature = "Implements")]
    pub fn create(&self, device: &::Device) -> ::Result<Sampler>
    {
        let mut h = VK_NULL_HANDLE as _;
        unsafe { vkCreateSampler(device.native_ptr(), &self.0, ::std::ptr::null(), &mut h) }
            .into_result().map(|_| Sampler(h, device.clone()))
    }
}