1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
//! A priority queue implemented with a bi-parental heap.
//!
//! Beap (bi-parental heap) is an
//! [implict data structure](https://en.wikipedia.org/wiki/Implicit_data_structure)
//! which allows efficient insertion and searching of elements, requiring low (*O*(1)) overhead.
//!
//! Insertion and popping the largest element have *O*(sqrt(*2n*)) time complexity.
//! Checking the largest element is *O*(1). Converting a vector to a beap
//! can be done by using sorting, and has *O*(*n* * log(*n*)) time complexity.
//! Despite the insertion and popping operations that are slower compared to the classical binary heap,
//! the bi-parental heap has an important advantage:
//! searching and removing an arbitrary element, as well as finding the minimum,
//! have the asymptotics *O*(sqrt(*2n*),) while the binary heap has *O*(*n*).
//!
//! This create presents an implementation of the bi-parental heap - `Beap`,
//! which has an identical interface with [`BinaryHeap`] from `std::collections`,
//! and at the same time it has several new useful methods.
//!
//! # Read about bi-parental heap:
//! * [Wikipedia](https://en.wikipedia.org/wiki/Beap)
//!
//! [`BinaryHeap`]: std::collections::BinaryHeap
//!

use std::fmt;
use std::iter::FusedIterator;
use std::ops::{Deref, DerefMut};

/// A priority queue implemented with a bi-parental heap (beap).
///
/// This will be a max-heap.
///
/// # Examples
///
/// ```
/// use beap::Beap;
///
/// // Type inference lets us omit an explicit type signature (which
/// // would be `Beap<i32>` in this example).
/// let mut beap = Beap::new();
///
/// // We can use peek to look at the next item in the beap. In this case,
/// // there's no items in there yet so we get None.
/// assert_eq!(beap.peek(), None);
///
/// // Let's add some scores...
/// beap.push(1);
/// beap.push(5);
/// beap.push(2);
///
/// // Now peek shows the most important item in the beap.
/// assert_eq!(beap.peek(), Some(&5));
///
/// // We can check the length of a beap.
/// assert_eq!(beap.len(), 3);
///
/// // We can iterate over the items in the beap, although they are returned in
/// // a random order.
/// for x in beap.iter() {
///     println!("{}", x);
/// }
///
/// // If we instead pop these scores, they should come back in order.
/// assert_eq!(beap.pop(), Some(5));
/// assert_eq!(beap.pop(), Some(2));
/// assert_eq!(beap.pop(), Some(1));
/// assert_eq!(beap.pop(), None);
///
/// // We can clear the beap of any remaining items.
/// beap.clear();
///
/// // The beap should now be empty.
/// assert!(beap.is_empty())
/// ```
///
/// A `Beap` with a known list of items can be initialized from an array:
///
/// ```
/// use beap::Beap;
///
/// let beap = Beap::from([1, 5, 2]);
/// ```
///
/// ## Min-heap
///
/// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to
/// make `Beap` a min-heap. This makes `beap.pop()` return the smallest
/// value instead of the greatest one.
///
/// ```
/// use beap::Beap;
/// use std::cmp::Reverse;
///
/// let mut beap = Beap::new();
///
/// // Wrap values in `Reverse`
/// beap.push(Reverse(1));
/// beap.push(Reverse(5));
/// beap.push(Reverse(2));
///
/// // If we pop these scores now, they should come back in the reverse order.
/// assert_eq!(beap.pop(), Some(Reverse(1)));
/// assert_eq!(beap.pop(), Some(Reverse(2)));
/// assert_eq!(beap.pop(), Some(Reverse(5)));
/// assert_eq!(beap.pop(), None);
/// ```
///
/// ## Sorting
///
/// ```
/// use beap::Beap;
///
/// let beap = Beap::from([5, 3, 1, 7]);
/// assert_eq!(beap.into_sorted_vec(), vec![1, 3, 5, 7]);
/// ```
pub struct Beap<T> {
    data: Vec<T>,
    height: usize,
}

/// Structure wrapping a mutable reference to the greatest item on a `Beap`.
///
/// This `struct` is created by the [`peek_mut`] method on [`Beap`]. See
/// its documentation for more.
///
/// [`peek_mut`]: Beap::peek_mut
pub struct PeekMut<'a, T: 'a + Ord> {
    beap: &'a mut Beap<T>,
    sift: bool,
}

impl<T: Ord + fmt::Debug> fmt::Debug for PeekMut<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PeekMut").field(&self.beap.data[0]).finish()
    }
}

impl<T: Ord> Drop for PeekMut<'_, T> {
    fn drop(&mut self) {
        if self.sift {
            self.beap.siftdown(0, 1);
        }
    }
}

impl<T: Ord> Deref for PeekMut<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        debug_assert!(!self.beap.is_empty());
        self.beap.data.get(0).unwrap()
    }
}

impl<T: Ord> DerefMut for PeekMut<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        debug_assert!(!self.beap.is_empty());
        self.sift = true;
        self.beap.data.get_mut(0).unwrap()
    }
}

impl<'a, T: Ord> PeekMut<'a, T> {
    /// Removes the peeked value from the heap and returns it.
    pub fn pop(mut this: PeekMut<'a, T>) -> T {
        let value = this.beap.pop().unwrap();
        this.sift = false;
        value
    }
}

impl<T: Clone> Clone for Beap<T> {
    fn clone(&self) -> Self {
        Beap {
            data: self.data.clone(),
            height: self.height,
        }
    }

    fn clone_from(&mut self, source: &Self) {
        self.data.clone_from(&source.data);
        self.height.clone_from(&source.height);
    }
}

/// Structure wrapping a mutable reference to the smallest item on a `Beap`.
///
/// This `struct` is created by the [`tail_mut`] method on [`Beap`]. See
/// its documentation for more.
///
/// [`tail_mut`]: Beap::tail_mut
pub struct TailMut<'a, T: 'a + Ord> {
    beap: &'a mut Beap<T>,
    sift: bool,
    pos: usize,
}

impl<T: Ord + fmt::Debug> fmt::Debug for TailMut<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("TailMut")
            .field(&self.beap.data[self.pos])
            .finish()
    }
}

impl<T: Ord> Drop for TailMut<'_, T> {
    fn drop(&mut self) {
        if self.sift {
            self.beap.repair(self.pos);
        }
    }
}

impl<T: Ord> Deref for TailMut<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        self.beap.data.get(self.pos).unwrap()
    }
}

impl<T: Ord> DerefMut for TailMut<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        self.sift = true;
        self.beap.data.get_mut(self.pos).unwrap()
    }
}

impl<'a, T: Ord> TailMut<'a, T> {
    /// Removes the peeked value from the beap and returns it.
    pub fn pop(mut this: TailMut<'a, T>) -> T {
        let value = this.beap.remove_from_pos(this.pos).unwrap();
        this.sift = false;
        value
    }
}

impl<T: Ord> Beap<T> {
    /// Returns a mutable reference to the greatest item in the beap, or
    /// `None` if it is empty.
    ///
    /// Note: If the `PeekMut` value is leaked, the beap may be in an
    /// inconsistent state.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert!(beap.peek_mut().is_none());
    ///
    /// beap.push(1);
    /// beap.push(5);
    /// beap.push(2);
    /// {
    ///     let mut val = beap.peek_mut().unwrap();
    ///     *val = 0;
    /// }
    /// assert_eq!(beap.peek(), Some(&2));
    /// ```
    ///
    /// # Time complexity
    ///
    /// If the item is modified then the worst case time complexity is *O*(sqrt(*2n*)),
    /// otherwise it's *O*(1).
    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
        if self.is_empty() {
            None
        } else {
            Some(PeekMut {
                beap: self,
                sift: false,
            })
        }
    }

    /// Pushes an item onto the beap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// beap.push(3);
    /// beap.push(5);
    /// beap.push(1);
    ///
    /// assert_eq!(beap.len(), 3);
    /// assert_eq!(beap.peek(), Some(&5));
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*))
    pub fn push(&mut self, item: T) {
        if let Some((_, end)) = self.span(self.height) {
            if self.data.len() > end {
                self.height += 1;
            }
        } else {
            self.height = 1;
        }

        self.data.push(item);
        self.siftup(self.data.len() - 1, self.height);
    }

    /// Removes the greatest item from the beap and returns it, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::from(vec![1, 3]);
    ///
    /// assert_eq!(beap.pop(), Some(3));
    /// assert_eq!(beap.pop(), Some(1));
    /// assert_eq!(beap.pop(), None);
    /// ```
    ///
    /// # Time complexity
    ///
    /// The worst case cost of `pop` on a beap containing *n* elements is *O*(sqrt(*2n*)).
    pub fn pop(&mut self) -> Option<T> {
        self.data.pop().map(|mut item| {
            if !self.is_empty() {
                let (start, _) = self.span(self.height).unwrap();
                if start == self.data.len() {
                    self.height -= 1;
                }
                std::mem::swap(&mut item, &mut self.data[0]);
                self.siftdown(0, 1);
            } else {
                self.height = 0;
            }
            item
        })
    }

    /// Effective equivalent to a sequential `push()` and `pop()` calls.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert_eq!(beap.pushpop(5), 5);
    /// assert!(beap.is_empty());
    ///
    /// beap.push(10);
    /// assert_eq!(beap.pushpop(20), 20);
    /// assert_eq!(beap.peek(), Some(&10));
    ///
    /// assert_eq!(beap.pushpop(5), 10);
    /// assert_eq!(beap.peek(), Some(&5));
    /// ```
    ///
    /// # Time complexity
    ///
    /// If the beap is empty or the element being added
    /// is larger (or equal) than the current top of the heap,
    /// then the time complexity will be *O*(1), otherwise *O*(sqrt(*2n*)).
    /// And unlike the sequential call of `push()` and `pop()`, the resizing never happens.
    pub fn pushpop(&mut self, mut item: T) -> T {
        if self.len() != 0 && self.data[0] > item {
            std::mem::swap(&mut item, &mut self.data[0]);
            self.siftdown(0, 1);
        }
        item
    }

    /// Returns true if the beap contains a value.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from([1, 5, 3, 7]);
    ///
    /// assert!(beap.contains(&1));
    /// assert!(beap.contains(&5));
    /// assert!(!beap.contains(&0));
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*))
    pub fn contains(&self, val: &T) -> bool {
        self.index(val).is_some()
    }

    /// Removes a value from the beap. Returns whether the value was present in the beap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::from([1, 5, 3]);
    ///
    /// assert!(beap.remove(&3));
    /// assert!(!beap.remove(&3));
    /// assert_eq!(beap.len(), 2);
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*))
    pub fn remove(&mut self, val: &T) -> bool {
        match self.index(val) {
            Some(idx) => {
                self.remove_from_pos(idx);
                true
            }
            None => false,
        }
    }

    /// Replaces the first found element with the value ```old``` with the
    /// value ```new```, returns ```true``` if the element ```old``` was found.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// beap.push(5);
    /// beap.push(10);
    ///
    /// assert!(beap.replace(&10, 100));
    /// assert!(!beap.replace(&1, 200));
    ///
    /// assert_eq!(beap.into_sorted_vec(), vec![5, 100]);
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*)).
    pub fn replace(&mut self, old: &T, new: T) -> bool {
        let idx = self.index(old);
        match idx {
            Some(pos) => {
                self.data[pos] = new;
                self.repair(pos);
                true
            }
            None => false,
        }
    }

    /// Returns the smallest item in the beap, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert_eq!(beap.tail(), None);
    ///
    /// beap.push(9);
    /// beap.push(3);
    /// beap.push(6);
    /// assert_eq!(beap.tail(), Some(&3));
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*))
    pub fn tail(&self) -> Option<&T> {
        match self.span(self.height) {
            None => None,
            Some((start, end)) => {
                if self.height == 1 {
                    self.data.get(0)
                } else {
                    let empty = end + 1 - self.len();
                    self.data.get(
                        ((start - empty)..=(end - empty))
                            .min_by_key(|&i| &self.data[i])
                            .unwrap(),
                    )
                }
            }
        }
    }

    /// Returns a mutable reference to the smallest item in the beap, or
    /// `None` if it is empty.
    ///
    /// Note: If the `TailMut` value is leaked, the beap may be in an
    /// inconsistent state.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert!(beap.tail_mut().is_none());
    ///
    /// beap.push(1);
    /// beap.push(5);
    /// beap.push(2);
    /// {
    ///     let mut val = beap.tail_mut().unwrap();
    ///     *val = 10;
    /// }
    /// assert_eq!(beap.tail(), Some(&2));
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*)),
    pub fn tail_mut(&mut self) -> Option<TailMut<'_, T>> {
        if let Some((start, end)) = self.span(self.height) {
            let empty = end + 1 - self.len();
            let idx = ((start - empty)..=(end - empty))
                .min_by_key(|&i| &self.data[i])
                .unwrap();
            Some(TailMut {
                beap: self,
                sift: false,
                pos: idx,
            })
        } else {
            None
        }
    }

    /// Removes the smallest item from the beap and returns it, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::from(vec![1, 3]);
    ///
    /// assert_eq!(beap.pop_tail(), Some(1));
    /// assert_eq!(beap.pop_tail(), Some(3));
    /// assert_eq!(beap.pop_tail(), None);
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(sqrt(*2n*)).
    pub fn pop_tail(&mut self) -> Option<T> {
        if let Some((start, end)) = self.span(self.height) {
            let empty = end + 1 - self.len();
            let idx = ((start - empty)..=(end - empty))
                .min_by_key(|&i| &self.data[i])
                .unwrap();
            self.remove_from_pos(idx)
        } else {
            None
        }
    }

    /// Consumes the `Beap` and returns a vector in sorted
    /// (ascending) order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let mut beap = Beap::from(vec![1, 2, 4, 5, 7]);
    /// beap.push(6);
    /// beap.push(3);
    ///
    /// let vec = beap.into_sorted_vec();
    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
    /// ```
    ///
    /// # Time complexity
    ///
    /// *O*(*nlog(n)*)
    ///
    /// Inside, `Vec::sort_unstable` is used.
    pub fn into_sorted_vec(mut self) -> Vec<T> {
        self.data.sort_unstable();
        self.data
    }

    /// Changing the current element with its least priority parent until the beap property is restored
    fn siftup(&mut self, mut pos: usize, mut block: usize) {
        let (mut start, _) = self.span(block).unwrap();

        while block > 1 {
            // Position of the element in the block.
            let pos_in_block = pos - start;

            // The first and last index of the elements of the previous block.
            let (prev_start, prev_end) = self.span(block - 1).unwrap();

            let parent;
            if pos_in_block > 0 {
                let left_parent = prev_start + pos_in_block - 1;
                let right_parent = prev_start + pos_in_block;

                if pos_in_block == block - 1 {
                    parent = prev_end; // The `pos` element does not have a right parent.
                } else if self.data[right_parent] < self.data[left_parent] {
                    // The priority of the right parent is less than the left one
                    parent = right_parent;
                } else {
                    parent = left_parent;
                }
            } else {
                parent = prev_start; // The `pos` element does not have a left parent.
            }

            if self.data[parent] >= self.data[pos] {
                break; // The beap property is met.
            }

            self.data.swap(pos, parent);
            pos = parent;
            start = prev_start;
            block -= 1;
        }
    }

    /// Sift down in time O(sqrt(2N)).
    /// Swap the element with its largest child until the heap property is restored.
    fn siftdown(&mut self, mut pos: usize, mut block: usize) {
        let (mut start, _) = self.span(block).unwrap();
        while block < self.height {
            let (next_start, _) = self.span(block + 1).unwrap();
            let level_pos = pos - start;

            // We will find the highest priority descendant.
            let mut child = next_start + level_pos;
            if child >= self.data.len() {
                break; // The `pos` element has no descendants.
            }

            if child + 1 < self.data.len() && self.data[child + 1] > self.data[child] {
                child += 1;
            }

            if self.data[pos] >= self.data[child] {
                break; // The beap property is met.
            }

            self.data.swap(pos, child);
            block += 1;
            start = next_start;
            pos = child;
        }
    }

    /// Restore the beap property (after changing the `pos` element).
    fn repair(&mut self, pos: usize) {
        if pos == 0 {
            self.siftdown(pos, 1);
        } else {
            let b = ((2 * (pos + 1)) as f64).sqrt().round() as usize;
            self.siftup(pos, b);
            self.siftdown(pos, b);
        }
    }

    /// Given the val value, find the index of an element with such a value
    /// or return None if such an element does not exist.
    /// Time complexity: O(sqrt(2n)).
    ///
    /// Let there be Beap        9
    ///                        8   7
    ///                      6   5   4
    ///                    3   2   1   0
    ///
    /// Consider it as the upper left corner of the matrix:
    /// 9 7 4 0
    /// 8 5 1
    /// 6 2
    /// 3
    ///
    /// Let's start the search from the upper-right corner
    /// (the last element of the inner vector).
    ///
    /// 1) If the priority of the desired element is greater than that
    /// of the element in the current position, then move to the left along the line.
    ///
    /// 2) If the priority of the desired element is less than that of the element
    /// in the current position, then move it down the column,
    ///
    /// 3) and if there is no element at the bottom, then move down and to the left
    /// (= left on the last layer of the heap).
    ///
    /// 4) As soon as we find an element with equal val priority, we return its index,
    /// and if we find ourselves in the left in the lower corner and the value in it
    /// is not equal to val, so the desired element does not exist and it's time to return None.
    fn index(&self, val: &T) -> Option<usize> {
        if self.len() == 0 {
            return None;
        }

        let mut block = self.height;
        let (left_low, mut right_up) = self.span(self.height).unwrap();

        if right_up >= self.len() {
            block -= 1;
            right_up = self.span(block).unwrap().1;
        }

        let mut pos = right_up;
        while pos != left_low {
            if self.data[pos] == *val {
                return Some(pos);
            }

            let (start, _) = self.span(block).unwrap();
            let block_pos = pos - start;

            if block > 1 && block_pos > 0 && *val > self.data[pos] {
                // Case 1: go to the left
                let (prev_start, _) = self.span(block - 1).unwrap();
                pos = prev_start + block_pos - 1;
                block -= 1;
            } else if *val < self.data[pos] && block < self.height {
                let (next_start, _) = self.span(block + 1).unwrap();
                if next_start + block_pos >= self.len() {
                    pos -= 1; // Case 3: Go left and down (diagonally).
                } else {
                    // Case 2: Go down.
                    pos = next_start + block_pos;
                    block += 1;
                }
            } else if block_pos > 0 {
                pos -= 1; // Case 3: Go left and down (diagonally).
            } else {
                return None; // Element not found.
            }
        }

        if *val == self.data[left_low] {
            Some(left_low)
        } else {
            None
        }
    }

    // Removing an item in the specified position.
    fn remove_from_pos(&mut self, pos: usize) -> Option<T> {
        let item_opt = self.data.pop().map(|mut item| {
            if !self.is_empty() {
                let (start, _) = self.span(self.height).unwrap();
                if start == self.data.len() {
                    self.height -= 1;
                }

                if pos != self.len() {
                    std::mem::swap(&mut item, &mut self.data[pos]);
                    self.repair(pos);
                }
            } else {
                self.height = 0;
            }
            item
        });

        item_opt
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let v = vec![-10, 1, 2, 3, 3];
    /// let mut a = Beap::from(v);
    ///
    /// let v = vec![-20, 5, 43];
    /// let mut b = Beap::from(v);
    ///
    /// a.append(&mut b);
    ///
    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
    /// assert!(b.is_empty());
    /// ```
    ///
    /// # Time complexity
    ///
    /// Operation can be done in *O*(n*log(n)),
    /// where *n* = self.len() + other.len().
    pub fn append(&mut self, other: &mut Self) {
        other.height = 0;
        self.data.append(&mut other.data);
        self.data.sort_unstable_by(|x, y| y.cmp(x));
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let mut beap = Beap::from([-10, 1, 2, 3, 3]);
    ///
    /// let mut v = vec![-20, 5, 43];
    /// beap.append_vec(&mut v);
    ///
    /// assert_eq!(beap.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
    /// assert!(v.is_empty());
    /// ```
    ///
    /// # Time complexity
    ///
    /// Operation can be done in *O*(n*log(n)),
    /// where *n* = self.len() + other.len().
    pub fn append_vec(&mut self, other: &mut Vec<T>) {
        self.data.append(other);
        self.data.sort_unstable_by(|x, y| y.cmp(x));
    }
}

impl<T> Beap<T> {
    /// Creates an empty `Beap` as a max-beap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert!(beap.is_empty());
    ///
    /// beap.push(4);
    /// assert_eq!(beap.len(), 1);
    /// ```
    #[must_use]
    pub fn new() -> Beap<T> {
        Beap {
            data: vec![],
            height: 0,
        }
    }

    /// Returns an iterator visiting all values in the underlying vector, in
    /// arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in beap.iter() {
    ///     println!("{}", x);
    /// }
    ///
    /// assert_eq!(beap.into_sorted_vec(), vec![1, 2, 3, 4]);
    /// ```
    pub fn iter(&self) -> Iter<'_, T> {
        Iter {
            iter: self.data.iter(),
        }
    }

    /// Creates an empty `Beap` with a specific capacity.
    /// This preallocates enough memory for `capacity` elements,
    /// so that the `Beap` does not have to be reallocated
    /// until it contains at least that many values.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::with_capacity(10);
    /// beap.push(4);
    /// ```
    #[must_use]
    pub fn with_capacity(capacity: usize) -> Beap<T> {
        Beap {
            data: Vec::with_capacity(capacity),
            height: 0,
        }
    }

    /// Returns the greatest item in the beap, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// assert_eq!(beap.peek(), None);
    ///
    /// beap.push(1);
    /// beap.push(5);
    /// beap.push(2);
    /// assert_eq!(beap.peek(), Some(&5));
    /// ```
    ///
    /// # Time complexity
    ///
    /// Cost is *O*(1) in the worst case.
    #[must_use]
    pub fn peek(&self) -> Option<&T> {
        self.data.get(0)
    }

    /// Returns the number of elements the beap can hold without reallocating.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::with_capacity(100);
    /// assert!(beap.capacity() >= 100);
    /// beap.push(4);
    /// ```
    #[must_use]
    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
    /// given `Beap`. Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore
    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
    /// insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// beap.reserve_exact(100);
    /// assert!(beap.capacity() >= 100);
    /// beap.push(4);
    /// ```
    ///
    /// [`reserve`]: Beap::reserve
    pub fn reserve_exact(&mut self, additional: usize) {
        self.data.reserve_exact(additional);
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the
    /// `Beap`. The collection may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    /// beap.reserve(100);
    /// assert!(beap.capacity() >= 100);
    /// beap.push(4);
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.data.reserve(additional);
    }

    /// Discards as much additional capacity as possible.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap: Beap<i32> = Beap::with_capacity(100);
    ///
    /// assert!(beap.capacity() >= 100);
    /// beap.shrink_to_fit();
    /// assert!(beap.capacity() == 0);
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.data.shrink_to_fit();
    }

    /// Discards capacity with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length
    /// and the supplied value.
    ///
    /// If the current capacity is less than the lower limit, this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap: Beap<i32> = Beap::with_capacity(100);
    ///
    /// assert!(beap.capacity() >= 100);
    /// beap.shrink_to(10);
    /// assert!(beap.capacity() >= 10);
    /// ```
    #[inline]
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.data.shrink_to(min_capacity);
    }

    /// Consumes the `Beap<T>` and returns the underlying vector Vec<T>
    /// in arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![1, 2, 3, 4, 5, 6, 7]);
    /// let vec = beap.into_vec();
    ///
    /// // Will print in some order
    /// for x in vec {
    ///     println!("{}", x);
    /// }
    /// ```
    #[must_use = "`self` will be dropped if the result is not used"]
    pub fn into_vec(self) -> Vec<T> {
        self.data
    }

    /// Returns the length of the beap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![1, 3]);
    ///
    /// assert_eq!(beap.len(), 2);
    /// ```
    #[must_use]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Checks if the beap is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::new();
    ///
    /// assert!(beap.is_empty());
    ///
    /// beap.push(3);
    /// beap.push(5);
    /// beap.push(1);
    ///
    /// assert!(!beap.is_empty());
    /// ```
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the bi-parental heap, returning an iterator over the removed elements
    /// in arbitrary order. If the iterator is dropped before being fully
    /// consumed, it drops the remaining elements in arbitrary order.
    ///
    /// The returned iterator keeps a mutable borrow on the beap to optimize
    /// its implementation.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::from([1, 3, 5]);
    ///
    /// assert!(!beap.is_empty());
    ///
    /// for x in beap.drain() {
    ///     println!("{}", x);
    /// }
    ///
    /// assert!(beap.is_empty());
    /// ```
    pub fn drain(&mut self) -> Drain<'_, T> {
        self.height = 0;
        Drain {
            iter: self.data.drain(..),
        }
    }

    /// Drops all items from the beap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let mut beap = Beap::from([1, 3, 5]);
    ///
    /// assert!(!beap.is_empty());
    ///
    /// beap.clear();
    ///
    /// assert!(beap.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.drain();
    }

    /// Start and end indexes of block b.
    /// Returns `None` if the block is empty.
    fn span(&self, b: usize) -> Option<(usize, usize)> {
        if b == 0 {
            None
        } else {
            Some((b * (b - 1) / 2, b * (b + 1) / 2 - 1))
        }
    }
}

impl<T: Ord> From<Vec<T>> for Beap<T> {
    /// Converts a `Vec<T>` into a `Beap<T>`.
    ///
    /// This conversion happens in-place, and has *O*(*n*) time complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![5, 3, 2, 4, 1]);
    /// assert_eq!(beap.into_sorted_vec(), vec![1, 2, 3, 4, 5]);
    /// ```
    fn from(mut vec: Vec<T>) -> Beap<T> {
        vec.sort_unstable_by(|x, y| y.cmp(x));
        let h = ((vec.len() * 2) as f64).sqrt().round() as usize;
        Beap {
            data: vec,
            height: h,
        }
    }
}

impl<T: Ord, const N: usize> From<[T; N]> for Beap<T> {
    /// Converts a `[T, N]` into a `Beap<T>`.
    ///
    /// This conversion has *O*(*nlog(n)*) time complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let mut b1 = Beap::from([1, 4, 2, 3]);
    /// let mut b2: Beap<_> = [1, 4, 2, 3].into();
    /// assert_eq!(b1.into_vec(), vec![4, 3, 2, 1]);
    /// assert_eq!(b2.into_vec(), vec![4, 3, 2, 1]);
    /// ```
    fn from(arr: [T; N]) -> Self {
        Beap::from(Vec::from(arr))
    }
}

impl<T: Ord> FromIterator<T> for Beap<T> {
    /// Building Beap from iterator.
    ///
    /// This conversion has *O*(*nlog(n)*) time complexity.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let mut b1 = Beap::from([1, 4, 2, 3]);
    /// let mut b2: Beap<i32> = [1, 4, 2, 3].into_iter().collect();
    /// while let Some((a, b)) = b1.pop().zip(b2.pop()) {
    ///     assert_eq!(a, b);
    /// }
    /// ```
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Beap<T> {
        Beap::from(iter.into_iter().collect::<Vec<_>>())
    }
}

impl<T: Ord> Extend<T> for Beap<T> {
    /// Extend Beap with elements from the iterator.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    ///
    /// let mut beap = Beap::new();
    /// beap.extend(vec![7, 1, 0, 4, 5, 3]);
    /// assert_eq!(beap.into_sorted_vec(), [0, 1, 3, 4, 5, 7]);
    /// ```
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        for x in iter {
            self.push(x);
        }
    }
}

impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for Beap<T> {
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }
}

impl<T> IntoIterator for Beap<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves each value out of
    /// the beap in arbitrary order. The beap cannot be used
    /// after calling this.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in beap.into_iter() {
    ///     // x has type i32, not &i32
    ///     println!("{}", x);
    /// }
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter {
            iter: self.data.into_iter(),
        }
    }
}

impl<'a, T> IntoIterator for &'a Beap<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    /// Returns an iterator visiting all values in the underlying vector, in
    /// arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use beap::Beap;
    /// let beap = Beap::from(vec![1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in &beap {
    ///     // x has type &i32
    ///     println!("{}", x);
    /// }
    ///
    /// assert_eq!(beap.into_sorted_vec(), vec![1, 2, 3, 4]);
    /// ```
    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

/// An iterator over the elements of a `Beap`.
///
/// This `struct` is created by [`Beap::iter()`]. See its
/// documentation for more.
///
/// [`iter`]: Beap::iter
#[derive(Clone)]
pub struct Iter<'a, T: 'a> {
    iter: std::slice::Iter<'a, T>,
}

impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
    }
}

impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    #[inline]
    fn next(&mut self) -> Option<&'a T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn last(self) -> Option<&'a T> {
        self.iter.last()
    }
}

impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a T> {
        self.iter.next_back()
    }
}

impl<T> FusedIterator for Iter<'_, T> {}

/// An owning iterator over the elements of a `Beap`.
///
/// This `struct` is created by [`Beap::into_iter()`]
/// (provided by the [`IntoIterator`] trait). See its documentation for more.
///
/// [`into_iter`]: Beap::into_iter
/// [`IntoIterator`]: core::iter::IntoIterator
#[derive(Clone)]
pub struct IntoIter<T> {
    iter: std::vec::IntoIter<T>,
}

impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter")
            .field(&self.iter.as_slice())
            .finish()
    }
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }
}

impl<T> DoubleEndedIterator for IntoIter<T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<T> FusedIterator for IntoIter<T> {}

/// A draining iterator over the elements of a `Beap`.
///
/// This `struct` is created by [`Beap::drain()`]. See its
/// documentation for more.
///
/// [`drain`]: Beap::drain
#[derive(Debug)]
pub struct Drain<'a, T: 'a> {
    iter: std::vec::Drain<'a, T>,
}

impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T> DoubleEndedIterator for Drain<'_, T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

impl<T> FusedIterator for Drain<'_, T> {}

#[cfg(test)]
mod tests;