1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
/*
 * Copyright (c) 2021 Bitdefender
 * SPDX-License-Identifier: Apache-2.0
 */
//! Decodes instructions.

use crate::cpu_modes::CpuModes;
use crate::cpuid::Cpuid;
use crate::decode_error::{status_to_error, DecodeError};
use crate::fpu_flags::FpuFlags;
use crate::instruction_category::Category;
use crate::isa_set::IsaSet;
use crate::mnemonic::Mnemonic;
use crate::operand;
use crate::operand::{OpAccess, Operands, OperandsLookup};
use crate::rflags::flags_raw;
use crate::tuple::Tuple;

use core::convert::TryFrom;
use core::fmt;
use core::mem;

/// Represents a succesfull instruction decoding, or failure.
pub type DecodeResult = Result<DecodedInstruction, DecodeError>;

/// The decoding mode to use.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum DecodeMode {
    /// 16-bit.
    Bits16,
    /// 32-bit.
    Bits32,
    /// 64-bit.
    Bits64,
}

#[doc(hidden)]
impl From<DecodeMode> for (u8, u8) {
    fn from(mode: DecodeMode) -> Self {
        match mode {
            DecodeMode::Bits16 => (ffi::ND_CODE_16 as u8, ffi::ND_DATA_16 as u8),
            DecodeMode::Bits32 => (ffi::ND_CODE_32 as u8, ffi::ND_DATA_32 as u8),
            DecodeMode::Bits64 => (ffi::ND_CODE_64 as u8, ffi::ND_DATA_64 as u8),
        }
    }
}

/// Encoding mode.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum EncodingMode {
    /// Legacy encoded instruction.
    Legacy,

    /// XOP encoded instruction.
    Xop,

    /// VEX encoded instruction.
    Vex,

    /// EVEX encoded instruction.
    Evex,
}

#[doc(hidden)]
impl EncodingMode {
    pub(crate) fn from_raw(value: u32) -> Result<Self, DecodeError> {
        match value {
            ffi::ND_ENCM_LEGACY => Ok(EncodingMode::Legacy),
            ffi::ND_ENCM_XOP => Ok(EncodingMode::Xop),
            ffi::ND_ENCM_VEX => Ok(EncodingMode::Vex),
            ffi::ND_ENCM_EVEX => Ok(EncodingMode::Evex),
            _ => Err(DecodeError::InternalError(value.into())),
        }
    }
}

/// VEX mode.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum VexMode {
    /// 2B VEX prefix (0xC5).
    Vex2b,

    /// 3B VEX prefix (0xC4).
    Vex3b,
}

#[doc(hidden)]
impl VexMode {
    pub(crate) fn from_raw(value: u32) -> Result<Self, DecodeError> {
        match value {
            ffi::ND_VEXM_2B => Ok(VexMode::Vex2b),
            ffi::ND_VEXM_3B => Ok(VexMode::Vex3b),
            _ => Err(DecodeError::InternalError(value.into())),
        }
    }
}

/// Addressing mode.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum AddressingMode {
    /// 16 bit addressing.
    Addr16,

    /// 32 bit addressing.
    Addr32,

    /// 64 bit addressing.
    Addr64,
}

#[doc(hidden)]
impl AddressingMode {
    pub(crate) fn from_raw(value: u32) -> Result<Self, DecodeError> {
        match value {
            ffi::ND_ADDR_16 => Ok(AddressingMode::Addr16),
            ffi::ND_ADDR_32 => Ok(AddressingMode::Addr32),
            ffi::ND_ADDR_64 => Ok(AddressingMode::Addr64),
            _ => Err(DecodeError::InternalError(value.into())),
        }
    }
}

/// Operand mode/size.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum OperandSize {
    /// 16 bit operand size.
    OpSize16,

    /// 32 bit operand size.
    OpSize32,

    /// 64 bit operand size.
    OpSize64,
}

#[doc(hidden)]
impl OperandSize {
    pub(crate) fn from_raw(value: u32) -> Result<Self, DecodeError> {
        match value {
            ffi::ND_OPSZ_16 => Ok(OperandSize::OpSize16),
            ffi::ND_OPSZ_32 => Ok(OperandSize::OpSize32),
            ffi::ND_OPSZ_64 => Ok(OperandSize::OpSize64),
            _ => Err(DecodeError::InternalError(value.into())),
        }
    }
}

/// Operand mode/size.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum VectorSize {
    /// 128 bit vector size.
    VecSize128,
    /// 256 bit vector size.
    VecSize256,
    /// 512 bit vector size.
    VecSize512,
}

#[doc(hidden)]
impl VectorSize {
    pub(crate) fn from_raw(value: u32) -> Result<Self, DecodeError> {
        match value {
            ffi::ND_VECM_128 => Ok(VectorSize::VecSize128),
            ffi::ND_VECM_256 => Ok(VectorSize::VecSize256),
            ffi::ND_VECM_512 => Ok(VectorSize::VecSize512),
            _ => Err(DecodeError::InternalError(value.into())),
        }
    }
}

/// Describes the way an instruction accesses the flags register.
///
/// Individual bits can be checked using the [rflags](crate::rflags) module.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct FlagsAccess {
    /// RFLAGS access mode, as per the entire register.
    pub mode: OpAccess,

    /// Tested flags.
    pub tested: u32,

    /// Modified (according to the result) flags.
    pub modified: u32,

    /// Flags that are always set to 1.
    pub set: u32,

    /// Flags that are always cleared to 0.
    pub cleared: u32,

    /// Undefined flags.
    pub undefined: u32,
}

/// EVEX rounding mode.
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub enum EvexRounding {
    /// Round to nearest equal.
    NearestEqual,
    /// Round down.
    Down,
    /// Round up.
    Up,
    /// round to zero.
    Zero,
}

#[doc(hidden)]
impl EvexRounding {
    pub(crate) fn from_raw(value: u8) -> Result<Self, DecodeError> {
        if value == ffi::_ND_ROUNDING::ND_RND_RNE as u8 {
            Ok(EvexRounding::NearestEqual)
        } else if value == ffi::_ND_ROUNDING::ND_RND_RD as u8 {
            Ok(EvexRounding::Down)
        } else if value == ffi::_ND_ROUNDING::ND_RND_RU as u8 {
            Ok(EvexRounding::Up)
        } else if value == ffi::_ND_ROUNDING::ND_RND_RZ as u8 {
            Ok(EvexRounding::Zero)
        } else {
            Err(DecodeError::InternalError(value.into()))
        }
    }
}

/// Indicates which prefixes are valid for an instruction.
#[allow(clippy::struct_excessive_bools)]
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct ValidPrefixes {
    /// The instruction supports REP prefix.
    pub rep: bool,
    /// The instruction supports REPZ/REPNZ prefixes.
    pub rep_cond: bool,
    /// The instruction supports LOCK prefix.
    pub lock: bool,
    /// The instruction supports XACQUIRE/XRELEASE prefixes.
    pub hle: bool,
    /// The instruction supports only XACQUIRE.
    pub xacquire: bool,
    /// The instruction supports only XRELEASE.
    pub xrelease: bool,
    /// The instruction supports BND prefix.
    pub bnd: bool,
    /// The instruction supports branch hints.
    pub bhint: bool,
    /// HLE prefix is accepted without LOCK.
    pub hle_no_lock: bool,
    /// The instruction supports the DNT (Do Not Track) CET prefix.
    pub dnt: bool,
}

#[doc(hidden)]
impl ValidPrefixes {
    pub(crate) fn from_raw(raw: ffi::ND_VALID_PREFIXES) -> Self {
        let raw = unsafe { raw.__bindgen_anon_1 };
        Self {
            rep: raw.Rep() != 0,
            rep_cond: raw.RepCond() != 0,
            lock: raw.Lock() != 0,
            hle: raw.Hle() != 0,
            xacquire: raw.Xacquire() != 0,
            xrelease: raw.Xrelease() != 0,
            bnd: raw.Bnd() != 0,
            bhint: raw.Bhint() != 0,
            hle_no_lock: raw.HleNoLock() != 0,
            dnt: raw.Dnt() != 0,
        }
    }
}

/// Indicates which decorators are valid for an instruction.
#[allow(clippy::struct_excessive_bools)]
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug)]
pub struct ValidDecorators {
    /// The instruction supports embedded rounding mode.
    pub er: bool,
    /// The instruction supports suppress all exceptions mode.
    pub sae: bool,
    /// The instruction supports zeroing.
    pub zero: bool,
    /// The instruction supports mask registers.
    pub mask: bool,
    /// The instruction supports broadcast.
    pub broadcast: bool,
}

#[doc(hidden)]
impl ValidDecorators {
    pub(crate) fn from_raw(raw: ffi::ND_VALID_DECORATORS) -> Self {
        let raw = unsafe { raw.__bindgen_anon_1 };
        Self {
            er: raw.Er() != 0,
            sae: raw.Sae() != 0,
            zero: raw.Zero() != 0,
            mask: raw.Mask() != 0,
            broadcast: raw.Broadcast() != 0,
        }
    }
}

/// A decoded instruction.
#[derive(Copy, Clone, Debug)]
pub struct DecodedInstruction {
    inner: ffi::INSTRUX,
    ip: u64,
    instruction: Mnemonic,
    length: usize,
}

impl DecodedInstruction {
    /// Decodes an array of bytes.
    ///
    /// # Arguments
    ///
    /// * `code` - An [`u8`] slice that holds the code to be decoded. Note that decoding is attempted only from offset
    /// 0 inside this code chunk.
    /// * `mode` - The mode in which to decode the instruction.
    /// * `ip` - The instruction pointer value to use when formatting the decoded instruction. Does not affect the
    /// decoding process in any way. If not needed, use [decode](DecodedInstruction::decode) instead.
    ///
    /// # Errors
    ///
    /// Wil return `Err` if the given bytes do not encode a valid instruction in the given mode.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bddisasm::DecodeError;
    /// #
    /// # fn main() -> Result<(), DecodeError> {
    /// use bddisasm::{DecodedInstruction, DecodeMode, Mnemonic};
    ///
    /// let code = vec![0x48, 0x8b, 0x05, 0xf9, 0xff, 0xff, 0xff];
    ///
    /// let instruction = DecodedInstruction::decode_with_ip(&code, DecodeMode::Bits64, 0)?;
    /// assert_eq!(format!("{}", instruction), "MOV       rax, qword ptr [rel 0x0]");
    ///
    /// let instruction = DecodedInstruction::decode_with_ip(&code, DecodeMode::Bits64, 0x100)?;
    /// assert_eq!(format!("{}", instruction), "MOV       rax, qword ptr [rel 0x100]");
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// This function will panic if the result of the C library is unrecognized. This can not happen under normal
    /// circumstances.
    pub fn decode_with_ip(code: &[u8], mode: DecodeMode, ip: u64) -> DecodeResult {
        let mut instrux: mem::MaybeUninit<ffi::INSTRUX> = mem::MaybeUninit::uninit();
        let instrux = instrux.as_mut_ptr();

        let (code_def, data_def) = mode.into();

        let status = unsafe {
            ffi::NdDecodeEx(
                instrux,
                code.as_ptr(),
                code.len() as u64,
                code_def,
                data_def,
            )
        };

        status_to_error(status)?;

        let instrux = unsafe { *instrux };
        Ok(DecodedInstruction {
            inner: instrux,
            ip,
            instruction: Mnemonic::try_from(instrux.Instruction).unwrap(),
            length: instrux.Length as usize,
        })
    }

    /// Decodes an array of bytes.
    ///
    /// This function is a thin wrapper over [`decode_with_ip`](DecodedInstruction::decode_with_ip) and behaves exactly
    /// the same. It sets `ip` to 0.
    ///
    /// # Errors
    ///
    /// Wil return `Err` if the given bytes do not encode a valid instruction in the given mode.
    ///
    /// # Panics
    ///
    /// This function will panic if the result of the C library is unrecognized. This can not happen under normal
    /// circumstances.
    pub fn decode(code: &[u8], mode: DecodeMode) -> DecodeResult {
        Self::decode_with_ip(code, mode, 0)
    }

    /// Get the mnemonic of the instruction.
    #[inline]
    #[must_use]
    pub fn mnemonic(&self) -> Mnemonic {
        self.instruction
    }

    /// Get the instruction length, in bytes.
    ///
    /// It is guaranteed that no instruction will exceed a length of 15 bytes.
    #[inline]
    #[must_use]
    pub fn length(&self) -> usize {
        self.length
    }

    /// Get the instruction operands.
    ///
    /// For working with specific operands (like the source or destination),
    /// [`operand_lookup()`](DecodedInstruction::operand_lookup) might be a better choice.
    ///
    /// The number of elements in the returned vector will always be equal to
    /// [`operands_count`](DecodedInstruction::operands_count).
    ///
    /// # Examples
    ///
    /// See [`operand`] for more in-depth examples on how to work with instruction operands.
    ///
    /// ```
    /// # use bddisasm::DecodeError;
    /// #
    /// # fn main() -> Result<(), DecodeError> {
    /// use bddisasm::{DecodedInstruction, DecodeMode, Mnemonic};
    ///
    /// // `MOV       ebx, dword ptr [ecx+edi]`
    /// let instruction = DecodedInstruction::decode(b"\x8b\x1c\x39", DecodeMode::Bits32)?;    ///
    /// let operands = instruction.operands();
    /// // The first operand is the destination
    /// let dst = operands[0];
    /// // The second operand is the source
    /// let src = operands[1];
    ///
    /// // Print information about the operands
    /// println!("{:#?} {:#?}", dst.info, src.info);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// This function will panic if the operand returned by the C library is invalid. This can not happen under normal
    /// circumstances.
    #[must_use]
    pub fn operands(&self) -> Operands {
        let mut operands = Operands::default();

        let op_count = self.inner.OperandsCount();
        for op_index in 0..op_count {
            operands.operands[op_index as usize] =
                operand::Operand::from_raw(self.inner.Operands[op_index as usize]).unwrap();
        }

        operands.actual_count = op_count as usize;

        operands
    }

    /// Returns the CPUID support flag.
    ///
    /// If [`None`], the instruction is supported on any CPU, and no CPUID flag exists.
    ///
    /// # Examples
    ///
    /// See [cpuid](crate::cpuid) for more in-depth examples on how to use the CPUID information.
    ///
    /// ```
    /// # use bddisasm::DecodeError;
    /// #
    /// # fn main() -> Result<(), DecodeError> {
    /// use bddisasm::{DecodedInstruction, DecodeMode, Mnemonic};
    ///
    /// // `RDMSR`
    /// let instruction = DecodedInstruction::decode(b"\x0f\x32", DecodeMode::Bits64)?;
    /// let cpuid = instruction.cpuid();
    /// assert!(cpuid.is_some());
    ///
    /// let cpuid = cpuid.unwrap();
    /// assert_eq!(cpuid.leaf, 1);
    /// assert_eq!(cpuid.sub_leaf, None);
    /// assert_eq!(cpuid.register, 2);
    /// assert_eq!(cpuid.bit, 5);
    ///
    /// # Ok(())
    /// # }
    /// ```
    #[must_use]
    pub fn cpuid(&self) -> Option<Cpuid> {
        let cpuid = unsafe { self.inner.CpuidFlag.__bindgen_anon_1 };
        let leaf = cpuid.Leaf;
        if leaf == ffi::ND_CFF_NO_LEAF {
            None
        } else {
            let sub_leaf = cpuid.SubLeaf();
            let sub_leaf = if sub_leaf == ffi::ND_CFF_NO_SUBLEAF {
                None
            } else {
                Some(sub_leaf)
            };

            let register = cpuid.Reg() as u8;
            let bit = u64::from(cpuid.Bit());

            Some(Cpuid {
                leaf,
                sub_leaf,
                register,
                bit,
            })
        }
    }

    /// Get the encoding mode used.
    ///
    /// # Panics
    ///
    /// This function will panic if the encoding mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn encoding_mode(&self) -> EncodingMode {
        EncodingMode::from_raw(u32::from(self.inner.EncMode())).unwrap()
    }

    /// Get the VEX mode, if any.
    ///
    /// # Panics
    ///
    /// This function will panic if the VEX mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn vex_mode(&self) -> Option<VexMode> {
        if self.has_vex() {
            Some(VexMode::from_raw(u32::from(self.inner.VexMode())).unwrap())
        } else {
            None
        }
    }

    /// Get the addressing mode.
    ///
    /// # Panics
    ///
    /// This function will panic if the addressing mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn addr_mode(&self) -> AddressingMode {
        AddressingMode::from_raw(u32::from(self.inner.AddrMode())).unwrap()
    }

    /// Get the operand mode/size.
    ///
    /// This is computed based on the passed-in [`DecodeMode`] and instruction prefixes.
    ///
    /// # Remarks
    ///
    /// The effective mode can be different (see [`effective_op_mode`](DecodedInstruction::effective_op_mode)).
    ///
    /// # Examples
    ///
    /// Using [`DecodeMode::Bits64`], `0x50` encodes a `PUSH rax` instruction with an operand size of
    /// 32 because it has no prefix that promotes it, but the effective size is 64 because the instruction always
    /// operates on 64 bits.
    ///
    /// ```
    /// # use bddisasm::DecodeError;
    /// #
    /// # fn main() -> Result<(), DecodeError> {
    /// use bddisasm::{DecodedInstruction, DecodeMode, Mnemonic, OperandSize};
    ///
    /// let ins =
    ///     DecodedInstruction::decode(&[0x50], DecodeMode::Bits64)?;
    /// assert_eq!(ins.mnemonic(), Mnemonic::PUSH);
    /// assert_eq!(ins.op_mode(), OperandSize::OpSize32);
    /// assert_eq!(ins.effective_op_mode(), OperandSize::OpSize64);
    ///
    /// let ins =
    ///     DecodedInstruction::decode(&[0x48, 0x50], DecodeMode::Bits64)?;
    /// assert_eq!(ins.mnemonic(), Mnemonic::PUSH);
    /// assert_eq!(ins.op_mode(), OperandSize::OpSize64);
    /// assert_eq!(ins.effective_op_mode(), OperandSize::OpSize64);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// # Panics
    ///
    /// This function will panic if the operand size is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn op_mode(&self) -> OperandSize {
        OperandSize::from_raw(u32::from(self.inner.OpMode())).unwrap()
    }

    /// Get the effective operand mode/size.
    ///
    /// Unlike [`op_mode`](DecodedInstruction::op_mode), this takes into account the actual instruction.
    ///
    /// # Panics
    ///
    /// This function will panic if the operand size is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn effective_op_mode(&self) -> OperandSize {
        OperandSize::from_raw(u32::from(self.inner.EfOpMode())).unwrap()
    }

    /// Get the Vector mode/size, if any.
    ///
    /// This is computed based on the passed-in [`DecodeMode`] and instruction prefixes.
    ///
    /// # Remarks
    ///
    /// The effective mode can be different (see [`effective_vec_mode`](DecodedInstruction::effective_vec_mode)).
    ///
    /// # Panics
    ///
    /// This function will panic if the vector mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn vec_mode(&self) -> Option<VectorSize> {
        if self.has_vector() {
            Some(VectorSize::from_raw(u32::from(self.inner.VecMode())).unwrap())
        } else {
            None
        }
    }

    /// Get the Vector mode/size, if any.
    ///
    /// Unlike [`vec_mode`](DecodedInstruction::vec_mode), this takes into account the actual instruction.
    ///
    /// # Panics
    ///
    /// This function will panic if the vector mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn effective_vec_mode(&self) -> Option<VectorSize> {
        if self.has_vector() {
            Some(VectorSize::from_raw(u32::from(self.inner.EfVecMode())).unwrap())
        } else {
            None
        }
    }

    /// `true` if REX is present.
    #[inline]
    #[must_use]
    pub fn has_rex(&self) -> bool {
        self.inner.HasRex() != 0
    }

    /// `true` if VEX is present.
    #[inline]
    #[must_use]
    pub fn has_vex(&self) -> bool {
        self.inner.HasVex() != 0
    }

    /// `true` if XOP is present.
    #[inline]
    #[must_use]
    pub fn has_xop(&self) -> bool {
        self.inner.HasXop() != 0
    }

    /// `true` if EVEX is present.
    #[inline]
    #[must_use]
    pub fn has_evex(&self) -> bool {
        self.inner.HasEvex() != 0
    }

    /// `true` if 0x66 is present.
    #[inline]
    #[must_use]
    pub fn has_op_size(&self) -> bool {
        self.inner.HasOpSize() != 0
    }

    /// `true` if 0x67 is present.
    #[inline]
    #[must_use]
    pub fn has_addr_size(&self) -> bool {
        self.inner.HasAddrSize() != 0
    }

    /// `true` if 0xF0 is present.
    #[inline]
    #[must_use]
    pub fn has_lock(&self) -> bool {
        self.inner.HasLock() != 0
    }

    /// `true` if 0xF2 is present.
    #[inline]
    #[must_use]
    pub fn has_repnz_xacquire_bnd(&self) -> bool {
        self.inner.HasRepnzXacquireBnd() != 0
    }

    /// `true` if 0xF3 is present.
    #[inline]
    #[must_use]
    pub fn has_rep_repz_xrelease(&self) -> bool {
        self.inner.HasRepRepzXrelease() != 0
    }

    /// `true` if segment override is present.
    #[inline]
    #[must_use]
    pub fn has_seg(&self) -> bool {
        self.inner.HasSeg() != 0
    }

    /// `true` if the instruction is repeated up to `RCX` times.
    #[inline]
    #[must_use]
    pub fn is_repeated(&self) -> bool {
        self.inner.IsRepeated() != 0
    }

    /// `true` if the instruction is XACQUIRE enabled.
    #[inline]
    #[must_use]
    pub fn is_xacquire_enabled(&self) -> bool {
        self.inner.IsXacquireEnabled() != 0
    }

    /// `true` if the instruction is XRELEASE enabled.
    #[inline]
    #[must_use]
    pub fn is_xrelease_enabled(&self) -> bool {
        self.inner.IsXreleaseEnabled() != 0
    }

    /// `true` if the instruction uses RIP relative addressing.
    #[inline]
    #[must_use]
    pub fn is_rip_relative(&self) -> bool {
        self.inner.IsRipRelative() != 0
    }

    /// `true` if this is an indirect CALL/JMP that is CET tracked.
    #[inline]
    #[must_use]
    pub fn is_cet_tracked(&self) -> bool {
        self.inner.IsCetTracked() != 0
    }

    /// `true` if we have valid MODRM.
    #[inline]
    #[must_use]
    pub fn has_mod_rm(&self) -> bool {
        self.inner.HasModRm() != 0
    }

    /// `true` if we have valid SIB.
    #[inline]
    #[must_use]
    pub fn has_sib(&self) -> bool {
        self.inner.HasSib() != 0
    }

    /// `true` if the instruction has displacement.
    #[inline]
    #[must_use]
    pub fn has_disp(&self) -> bool {
        self.inner.HasDisp() != 0
    }

    /// `true` if the instruction contains a direct address (ie, `CALL far 0x9A`).
    #[inline]
    #[must_use]
    pub fn has_addr(&self) -> bool {
        self.inner.HasAddr() != 0
    }

    /// `true` if the instruction contains a moffset (ie, `MOV al, [mem], 0xA0`).
    #[inline]
    #[must_use]
    pub fn has_moffset(&self) -> bool {
        self.inner.HasMoffset() != 0
    }

    /// `true` if immediate is present.
    #[inline]
    #[must_use]
    pub fn has_imm1(&self) -> bool {
        self.inner.HasImm1() != 0
    }

    /// `true` if second immediate is present.
    #[inline]
    #[must_use]
    pub fn has_imm2(&self) -> bool {
        self.inner.HasImm2() != 0
    }

    /// `true` if the instruction contains a relative offset (ie, `Jcc 0x7x`).
    #[inline]
    #[must_use]
    pub fn has_rel_offs(&self) -> bool {
        self.inner.HasRelOffs() != 0
    }

    /// `true` if SSE immediate that encodes additional registers is present.
    #[inline]
    #[must_use]
    pub fn has_sse_imm(&self) -> bool {
        self.inner.HasSseImm() != 0
    }

    /// `true` if the instruction uses compressed displacement.
    #[inline]
    #[must_use]
    pub fn has_comp_disp(&self) -> bool {
        self.inner.HasCompDisp() != 0
    }

    /// `true` if the instruction uses broadcast addressing.
    #[inline]
    #[must_use]
    pub fn has_broadcast(&self) -> bool {
        self.inner.HasBroadcast() != 0
    }

    /// `true` if the instruction has mask.
    #[inline]
    #[must_use]
    pub fn has_mask(&self) -> bool {
        self.inner.HasMask() != 0
    }

    /// `true` if the instruction uses zeroing.
    #[inline]
    #[must_use]
    pub fn has_zero(&self) -> bool {
        self.inner.HasZero() != 0
    }

    /// `true` if the instruction has embedded rounding.
    #[inline]
    #[must_use]
    pub fn has_er(&self) -> bool {
        self.inner.HasEr() != 0
    }

    /// `true` if the instruction has SAE.
    #[inline]
    #[must_use]
    pub fn has_sae(&self) -> bool {
        self.inner.HasSae() != 0
    }

    /// `true` if the instruction ignores embedded rounding.
    #[inline]
    #[must_use]
    pub fn has_ign_er(&self) -> bool {
        self.inner.HasIgnEr() != 0
    }

    /// `true` if changing prefix.
    #[inline]
    #[must_use]
    pub fn has_mandatory_66(&self) -> bool {
        self.inner.HasMandatory66() != 0
    }

    /// 0x66 is mandatory prefix. Does not behave as REP prefix.
    #[inline]
    #[must_use]
    pub fn has_mandatory_f2(&self) -> bool {
        self.inner.HasMandatoryF2() != 0
    }

    /// 0x66 is mandatory prefix. Does not behave as REP prefix.
    #[inline]
    #[must_use]
    pub fn has_mandatory_f3(&self) -> bool {
        self.inner.HasMandatoryF3() != 0
    }

    /// The length of the instruction word. 2, 4 or 8.
    #[inline]
    #[must_use]
    pub fn word_length(&self) -> usize {
        self.inner.WordLength() as usize
    }

    /// The total number of bytes consumed by prefixes.
    ///
    /// This will also be the offset to the first opcode. The primary opcode will always be the last one.
    #[inline]
    #[must_use]
    pub fn pref_length(&self) -> usize {
        self.inner.PrefLength() as usize
    }

    /// Number of opcode bytes. Max 3.
    #[inline]
    #[must_use]
    pub fn op_length(&self) -> usize {
        self.inner.OpLength() as usize
    }

    /// Displacement length, in bytes. Maximum 4.
    #[inline]
    #[must_use]
    pub fn disp_length(&self) -> usize {
        self.inner.DispLength() as usize
    }

    /// Absolute address length, in bytes. Maximum 8 bytes.
    #[inline]
    #[must_use]
    pub fn addr_length(&self) -> usize {
        self.inner.AddrLength() as usize
    }

    /// Memory offset length, in bytes. Maximum 8 bytes.
    #[inline]
    #[must_use]
    pub fn moffset_length(&self) -> usize {
        self.inner.MoffsetLength() as usize
    }

    /// First immediate length, in bytes. Maximum 8 bytes.
    #[inline]
    #[must_use]
    pub fn imm1_length(&self) -> usize {
        self.inner.Imm1Length() as usize
    }

    /// Second immediate length, in bytes. Maximum 8 bytes.
    #[inline]
    #[must_use]
    pub fn imm2_length(&self) -> usize {
        self.inner.Imm2Length() as usize
    }

    /// Relative offset length, in bytes. Maximum 4 bytes.
    #[inline]
    #[must_use]
    pub fn rel_offs_length(&self) -> usize {
        self.inner.RelOffsLength() as usize
    }

    /// The offset of the first opcode, inside the instruction.
    #[inline]
    #[must_use]
    pub fn op_offset(&self) -> usize {
        self.inner.OpOffset() as usize
    }

    /// The offset of the nominal opcode, inside the instruction.
    #[inline]
    #[must_use]
    pub fn main_op_offset(&self) -> usize {
        self.inner.MainOpOffset() as usize
    }

    /// The offset of the displacement, inside the instruction.
    #[inline]
    #[must_use]
    pub fn disp_offset(&self) -> Option<usize> {
        let value = self.inner.DispOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the hard-coded address.
    #[inline]
    #[must_use]
    pub fn addr_offset(&self) -> Option<usize> {
        let value = self.inner.AddrOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the absolute address, inside the instruction.
    #[inline]
    #[must_use]
    pub fn moffset_offset(&self) -> Option<usize> {
        let value = self.inner.MoffsetOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the immediate, inside the instruction.
    #[inline]
    #[must_use]
    pub fn imm1_offset(&self) -> Option<usize> {
        let value = self.inner.Imm1Offset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the second immediate, if any, inside the instruction.
    #[inline]
    #[must_use]
    pub fn imm2_offset(&self) -> Option<usize> {
        let value = self.inner.Imm2Offset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the relative offset used in instruction.
    #[inline]
    #[must_use]
    pub fn rel_offs_offset(&self) -> Option<usize> {
        let value = self.inner.RelOffsOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the SSE immediate, if any, inside the instruction.
    #[inline]
    #[must_use]
    pub fn sse_imm_offset(&self) -> Option<usize> {
        let value = self.inner.SseImmOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The offset of the mod rm byte inside the instruction, if any.
    #[inline]
    #[must_use]
    pub fn mod_rm_offset(&self) -> Option<usize> {
        let value = self.inner.ModRmOffset() as usize;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// Number of words accessed on/from the stack.
    #[inline]
    #[must_use]
    pub fn stack_words(&self) -> usize {
        self.inner.StackWords() as usize
    }

    /// The last rep/repz/repnz prefix. if any.
    #[inline]
    #[must_use]
    pub fn rep(&self) -> Option<u8> {
        let value = self.inner.Rep;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// The last segment override prefix. if none. `FS`/`GS` if 64 bit.
    #[inline]
    #[must_use]
    pub fn seg(&self) -> Option<u8> {
        let value = self.inner.Seg;
        if value == 0 {
            None
        } else {
            Some(value)
        }
    }

    /// Get the `ModRM` byte.
    #[inline]
    #[must_use]
    pub fn mod_rm(&self) -> Option<u8> {
        if self.has_mod_rm() {
            Some(unsafe { self.inner.ModRm.ModRm })
        } else {
            None
        }
    }

    /// Get the `SIB` byte.
    #[inline]
    #[must_use]
    pub fn sib(&self) -> Option<u8> {
        if self.has_sib() {
            Some(unsafe { self.inner.Sib.Sib })
        } else {
            None
        }
    }

    /// Get the 2-bytes `VEX` prefix.
    #[inline]
    #[must_use]
    pub fn vex2(&self) -> Option<(u8, u8)> {
        if matches!(self.vex_mode(), Some(VexMode::Vex2b)) {
            let vex2 = self.inner.__bindgen_anon_1;
            let vex2 = unsafe { vex2.Vex2.Vex };

            Some((vex2[0], vex2[1]))
        } else {
            None
        }
    }

    /// Get the 3-bytes `VEX` prefix.
    #[inline]
    #[must_use]
    pub fn vex3(&self) -> Option<(u8, u8, u8)> {
        if matches!(self.vex_mode(), Some(VexMode::Vex3b)) {
            let vex3 = self.inner.__bindgen_anon_1;
            let vex3 = unsafe { vex3.Vex3.Vex };

            Some((vex3[0], vex3[1], vex3[2]))
        } else {
            None
        }
    }

    /// Get the `XOP` bytes.
    #[inline]
    #[must_use]
    pub fn xop(&self) -> Option<(u8, u8, u8)> {
        if self.has_xop() {
            let xop = self.inner.__bindgen_anon_1;
            let xop = unsafe { xop.Xop.Xop };

            Some((xop[0], xop[1], xop[2]))
        } else {
            None
        }
    }

    /// Get the `EVEX` bytes.
    #[inline]
    #[must_use]
    pub fn evex(&self) -> Option<(u8, u8, u8, u8)> {
        if self.has_evex() {
            let evex = self.inner.__bindgen_anon_1;
            let evex = unsafe { evex.Evex.Evex };

            Some((evex[0], evex[1], evex[2], evex[3]))
        } else {
            None
        }
    }

    /// Get the absolute offset, if any.
    #[inline]
    #[must_use]
    pub fn moffset(&self) -> Option<u64> {
        if self.has_moffset() {
            Some(unsafe { self.inner.__bindgen_anon_2.Moffset })
        } else {
            None
        }
    }

    /// Get the displacement. Max 4 bytes. Used in `ModRM` instructions.
    #[inline]
    #[must_use]
    pub fn disp(&self) -> Option<u32> {
        if self.has_disp() {
            Some(unsafe { self.inner.__bindgen_anon_2.Displacement })
        } else {
            None
        }
    }

    /// Get the relative offset, used for branches. Max 4 bytes.
    #[inline]
    #[must_use]
    pub fn rel_offset(&self) -> Option<u32> {
        if self.has_rel_offs() {
            Some(unsafe { self.inner.__bindgen_anon_2.RelativeOffset })
        } else {
            None
        }
    }

    /// Get the first immediate.
    #[inline]
    #[must_use]
    pub fn immediate1(&self) -> Option<u64> {
        if self.has_imm1() {
            Some(self.inner.Immediate1)
        } else {
            None
        }
    }

    /// Get the second immediate. Used mainly for [`Mnemonic::ENTER`].
    #[inline]
    #[must_use]
    pub fn immediate2(&self) -> Option<u8> {
        if self.has_imm2() {
            Some(unsafe { self.inner.__bindgen_anon_3.Immediate2 })
        } else {
            None
        }
    }

    /// Get the SSE immediate. It is used to select a register.
    #[inline]
    #[must_use]
    pub fn sse_immediate(&self) -> Option<u8> {
        if self.has_sse_imm() {
            Some(unsafe { self.inner.__bindgen_anon_3.SseImmediate })
        } else {
            None
        }
    }

    /// Get the condition byte.
    #[inline]
    #[must_use]
    pub fn cond(&self) -> Option<u8> {
        if (self.inner.Attributes & ffi::ND_FLAG_COND as u64) != 0 {
            Some(self.inner.__bindgen_anon_4.Condition())
        } else {
            None
        }
    }

    /// `true` if the instruction is 3DNow!.
    ///
    /// The opcode is the last byte.
    #[inline]
    #[must_use]
    pub fn is_3d_now(&self) -> bool {
        (self.inner.Attributes & ffi::ND_FLAG_3DNOW as u64) != 0
    }

    /// Get the number of operands.
    #[inline]
    #[must_use]
    pub fn operands_count(&self) -> usize {
        self.inner.OperandsCount() as usize
    }

    /// Number of explicit operands.
    ///
    /// Use this if you want to ignore implicit operands such as stack, flags, etc.
    #[inline]
    #[must_use]
    pub fn exp_operands_count(&self) -> usize {
        self.inner.ExpOperandsCount() as usize
    }

    /// Get the `CS` access mode.
    #[inline]
    #[must_use]
    pub fn cs_access(&self) -> OpAccess {
        OpAccess::from_raw(ffi::ND_OPERAND_ACCESS {
            Access: self.inner.CsAccess,
        })
    }

    /// Get the `RIP` access mode.
    #[inline]
    #[must_use]
    pub fn rip_access(&self) -> OpAccess {
        OpAccess::from_raw(ffi::ND_OPERAND_ACCESS {
            Access: self.inner.RipAccess,
        })
    }

    /// Get the stack access mode.
    #[inline]
    #[must_use]
    pub fn stack_access(&self) -> OpAccess {
        OpAccess::from_raw(ffi::ND_OPERAND_ACCESS {
            Access: self.inner.StackAccess,
        })
    }

    /// Get the memory access mode.
    ///
    /// This includes the stack or shadow stack access.
    #[inline]
    #[must_use]
    pub fn memory_access(&self) -> OpAccess {
        OpAccess::from_raw(ffi::ND_OPERAND_ACCESS {
            Access: self.inner.MemoryAccess,
        })
    }

    /// `true` if the instruction is a branch.
    #[inline]
    #[must_use]
    pub fn is_branch(&self) -> bool {
        self.inner.BranchInfo.IsBranch() != 0
    }

    /// `true` if the instruction is a conditional branch.
    #[inline]
    #[must_use]
    pub fn is_conditional_branch(&self) -> bool {
        self.inner.BranchInfo.IsConditional() != 0
    }

    /// `true` if the instruction is a indirect branch.
    #[inline]
    #[must_use]
    pub fn is_indirect_branch(&self) -> bool {
        self.inner.BranchInfo.IsIndirect() != 0
    }

    /// `true` if the instruction is a far branch.
    #[inline]
    #[must_use]
    pub fn is_far_branch(&self) -> bool {
        self.inner.BranchInfo.IsFar() != 0
    }

    /// Get the rflags access.
    #[must_use]
    pub fn flags_access(&self) -> FlagsAccess {
        let facc = self.inner.FlagsAccess;

        let mode = OpAccess::from_raw(ffi::ND_OPERAND_ACCESS {
            Access: self.inner.RflAccess,
        });

        FlagsAccess {
            mode,
            tested: flags_raw(facc.Tested),
            modified: flags_raw(facc.Modified),
            set: flags_raw(facc.Set),
            cleared: flags_raw(facc.Cleared),
            undefined: flags_raw(facc.Undefined),
        }
    }

    /// `FPU` status word C0-C3 bits access.
    ///
    /// # Panics
    ///
    /// This function will panic if the access mode is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn fpu_flags_access(&self) -> FpuFlags {
        FpuFlags::from_raw(self.inner.FpuFlagsAccess).unwrap()
    }

    /// `EVEX` tuple type.
    ///
    /// # Panics
    ///
    /// This function will panic if the EVEX tuple type is unrecognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn evex_tuple(&self) -> Option<Tuple> {
        if self.has_evex() {
            Some(Tuple::from_raw(u32::from(self.inner.TupleType)).unwrap())
        } else {
            None
        }
    }

    /// `EVEX` rounding mode.
    ///
    /// # Panics
    ///
    /// This function will panic if the EVEX rounding mode is unrecognized. This can not happen under normal
    /// circumstances.
    #[inline]
    #[must_use]
    pub fn evex_rounding(&self) -> Option<EvexRounding> {
        if self.has_er() {
            Some(EvexRounding::from_raw(self.inner.RoundingMode()).unwrap())
        } else {
            None
        }
    }

    /// Get the instruction category.
    ///
    /// # Panics
    ///
    /// This function will panic if the cateogory not recognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn category(&self) -> Category {
        Category::try_from(self.inner.Category).unwrap()
    }

    /// Get the ISA set.
    ///
    /// # Panics
    ///
    /// This function will panic if the ISA set not recognized. This can not happen under normal circumstances.
    #[inline]
    #[must_use]
    pub fn isa_set(&self) -> IsaSet {
        IsaSet::try_from(self.inner.IsaSet).unwrap()
    }

    /// Get the CPU modes in which the instruction is valid.
    ///
    /// # Examples
    ///
    /// See [`cpu_modes`](crate::cpu_modes) for examples.
    #[inline]
    #[must_use]
    pub fn valid_cpu_modes(&self) -> CpuModes {
        CpuModes::from_raw(self.inner.ValidModes)
    }

    /// Get the valid prefixes for this instruction.
    #[inline]
    #[must_use]
    pub fn valid_prefixes(&self) -> ValidPrefixes {
        ValidPrefixes::from_raw(self.inner.ValidPrefixes)
    }

    /// Get the decorators accepted by the instruction.
    #[inline]
    #[must_use]
    pub fn valid_decorators(&self) -> ValidDecorators {
        ValidDecorators::from_raw(self.inner.ValidDecorators)
    }

    /// Get the main/nominal opcode.
    #[inline]
    #[must_use]
    pub fn primary_op_code(&self) -> u8 {
        unsafe { self.inner.__bindgen_anon_4.PrimaryOpCode }
    }

    /// `true` if the instruction is a SIMD instruction that operates on vector regs.
    #[inline]
    #[must_use]
    pub fn has_vector(&self) -> bool {
        self.inner.Attributes & ffi::ND_FLAG_VECTOR as u64 != 0
    }
}

impl<'a> DecodedInstruction {
    /// Get the instruction bytes.
    #[inline]
    #[must_use]
    pub fn bytes(&'a self) -> &'a [u8] {
        &self.inner.InstructionBytes[..self.inner.Length as usize]
    }

    /// Get the opcode bytes (escape codes and main op code).
    #[inline]
    #[must_use]
    pub fn op_code_bytes(&'a self) -> &'a [u8] {
        &self.inner.OpCodeBytes[..self.op_length()]
    }

    /// Get an operand lookup table.
    ///
    /// This can be useful when needing to work with a specific operand without needing to iterate over the operands
    /// returned by [operands()](DecodedInstruction::operands), and without needing to rely on the order of the
    /// operands.
    ///
    /// # Examples
    ///
    /// See [`OperandsLookup`] for examples.
    ///
    /// # Panics
    ///
    /// This function will panic if the result of the C library is unrecognized. This can not happen under normal
    /// circumstances.
    #[inline]
    #[must_use]
    pub fn operand_lookup(&'a self) -> OperandsLookup {
        OperandsLookup::from_raw(&self.inner)
    }
}

impl fmt::Display for DecodedInstruction {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut buffer: [u8; ffi::ND_MIN_BUF_SIZE as usize] = [0; ffi::ND_MIN_BUF_SIZE as usize];
        let status = unsafe {
            ffi::NdToText(
                &self.inner,
                self.ip,
                buffer.len() as u32,
                buffer.as_mut_ptr().cast::<i8>(),
            )
        };
        match status_to_error(status) {
            Ok(_) => {
                let text = core::str::from_utf8(&buffer).unwrap();
                write!(f, "{}", text.trim_matches(char::from(0)))
            }
            Err(_) => Err(fmt::Error),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn decode() {
        let code = vec![0xb8, 0x00, 0x00, 0x00, 0x00];
        let ins = DecodedInstruction::decode(&code, DecodeMode::Bits32).expect("Unable to decode");
        assert_eq!(ins.instruction, Mnemonic::MOV);
        assert_eq!(ins.bytes(), code);
        assert_eq!(format!("{}", ins), "MOV       eax, 0x00000000");
    }

    #[test]
    fn decode_with_ip() {
        let code = b"\x48\x8b\x05\xf9\xff\xff\xff";
        let ins = DecodedInstruction::decode_with_ip(code, DecodeMode::Bits64, 0x100)
            .expect("Unable to decode");
        assert_eq!(ins.instruction, Mnemonic::MOV);
        assert_eq!(ins.bytes(), code);
        assert_eq!(format!("{}", ins), "MOV       rax, qword ptr [rel 0x100]");
    }

    fn get_tokens(line: &str, index: usize) -> u32 {
        let tokens = line.split(" ").collect::<Vec<&str>>();
        let tokens = tokens
            .into_iter()
            .filter(|s| !s.is_empty())
            .collect::<Vec<&str>>();

        let token = tokens[index];
        if token.starts_with("0x") {
            u32::from_str_radix(token.trim_start_matches("0x"), 16).unwrap()
        } else {
            token.parse().unwrap()
        }
    }

    #[test]
    fn constants() {
        // These will probably never change, so it is not really worth it to generate the enums and the `From`
        // implementations at every build, but these tests should be enough to catch the unlikely situation in which
        // a new constant is added.
        let bindings = include_str!("../../bddisasm-sys/csrc/inc/bddisasm.h");
        let mut shadow_stack_count: u8 = 0;
        let mut tuple_count: u32 = 0;
        let mut evex_rounding: u8 = 0;
        for line in bindings.lines() {
            if line.starts_with("#define ND_ENCM_") {
                assert!(EncodingMode::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_VEXM_") {
                assert!(VexMode::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_ADDR_") {
                assert!(AddressingMode::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_OPSZ_") {
                assert!(OperandSize::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_VECM_") {
                assert!(VectorSize::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_SIZE_")
                && !line.starts_with("#define ND_SIZE_TO_MASK(sz)")
            {
                // TODO: this test should be in `operand.rs`, but since we are already parsing `bddisasm.h` here it
                // felt wastefull to also parse it there.
                assert!(operand::OpSize::from_raw(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("    ND_SHSTK_") {
                // TODO: this test should be in `operand.rs`, but since we are already parsing `bddisasm.h` here it
                // felt wastefull to also parse it there.
                assert!(operand::ShadowStackAccess::from_raw(shadow_stack_count).is_ok());
                shadow_stack_count += 1;
            } else if line.starts_with("#define ND_FPU_FLAG_") {
                // TODO: this test should be in `fpu_flags.rs`, but since we are already parsing `bddisasm.h` here it
                // felt wastefull to also parse it there.
                assert!(
                    crate::fpu_flags::FpuFlagsAccess::from_raw(get_tokens(line, 2) as u8).is_ok()
                );
            } else if line.starts_with("    ND_TUPLE_") {
                // TODO: this test should be in `operand.rs`, but since we are already parsing `bddisasm.h` here it
                // felt wastefull to also parse it there.
                assert!(Tuple::from_raw(tuple_count).is_ok());
                tuple_count += 1;
            } else if line.starts_with("    ND_RND_") {
                // TODO: this test should be in `operand.rs`, but since we are already parsing `bddisasm.h` here it
                // felt wastefull to also parse it there.
                assert!(EvexRounding::from_raw(evex_rounding).is_ok());
                evex_rounding += 1;
            }
        }
    }

    #[test]
    fn status() {
        let status = include_str!("../../bddisasm-sys/csrc/inc/bddisasm_status.h");
        for line in status.lines() {
            if line.starts_with("#define ND_STATUS_SUCCESS")
                || line.starts_with("#define ND_STATUS_HINT_OPERAND_NOT_USED")
            {
                assert!(status_to_error(get_tokens(line, 2)).is_ok());
            } else if line.starts_with("#define ND_STATUS_") {
                assert!(status_to_error(get_tokens(line, 2)).is_err());
            }
        }
    }

    #[test]
    fn check_all_evex_roundings() {
        // This is a really contrieved way of making sure that we check all variants of `ffi::_ND_ROUNDING`. If a new
        // one is added, this will fail to build. We do this vecause `EvexRounding::from_raw` takes an `u8`.
        // NOTE: When a new variant is added, `EvexRounding::from_raw` must be updated.
        match ffi::_ND_ROUNDING::ND_RND_RNE {
            ffi::_ND_ROUNDING::ND_RND_RNE => {}
            ffi::_ND_ROUNDING::ND_RND_RD => {}
            ffi::_ND_ROUNDING::ND_RND_RU => {}
            ffi::_ND_ROUNDING::ND_RND_RZ => {}
        }
    }
}