1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! This module defines the basic vector trait and indexers.
use super::{
    Buffer, BufferBorrow, ComplexNumberSpace, DataDomain, Domain, DspVec, ErrorReason, NumberSpace,
    ToSlice, ToSliceMut, TypeMetaData, VoidResult,
};
use crate::multicore_support::MultiCoreSettings;
use crate::numbers::*;
use std::ops::*;
use crate::{array_to_complex, array_to_complex_mut};

/// Like [`std::ops::Index`](https://doc.rust-lang.org/std/ops/trait.Index.html)
/// but with a different method name so that it can be used to implement an additional range
/// accessor for complex data.
///
/// Note if indexers will return an empty array in case the vector isn't complex.
pub trait ComplexIndex<Idx>
where
    Idx: Sized,
{
    type Output: ?Sized;
    /// The method for complex indexing
    fn complex(&self, index: Idx) -> &Self::Output;
}

/// Like [`std::ops::IndexMut`](https://doc.rust-lang.org/std/ops/trait.IndexMut.html)
/// but with a different method name so that it can be used to implement a additional range
/// accessor for complex data.
///
/// Note if indexers will return an empty array in case the vector isn't complex.
pub trait ComplexIndexMut<Idx>: ComplexIndex<Idx>
where
    Idx: Sized,
{
    /// The method for complex indexing
    fn complex_mut(&mut self, index: Idx) -> &mut Self::Output;
}

/// A trait which provides information about number space and domain.
pub trait MetaData {
    /// The domain in which the data vector resides. Basically specifies the x-axis and the
    /// type of operations which are valid on this vector.
    ///
    /// The domain can be changed using the `RededicateOps` trait.
    fn domain(&self) -> DataDomain;

    /// Indicates whether the vector contains complex data. This also specifies the type
    /// of operations which are valid on this vector.
    ///
    /// The number space can be changed using the `RededicateOps` trait.
    fn is_complex(&self) -> bool;
}

/// Operations to resize a data type.
pub trait ResizeOps {
    /// Changes `self.len()`.
    /// If `self.is_complex()` is true then `len` must be an even number.
    /// `len > self.alloc_len()` is only possible if the underlying storage supports resizing.
    fn resize(&mut self, len: usize) -> VoidResult;
}

/// Operations to resize a data type.
pub trait ResizeBufferedOps<S: ToSliceMut<T>, T: RealNumber> {
    /// Changes `self.len()`.
    /// If `self.is_complex()` is true then `len` must be an even number.
    /// `len > self.alloc_len()` is only possible if the underlying storage or the buffer
    /// supports resizing.
    fn resize_b<B>(&mut self, buffer: &mut B, len: usize) -> VoidResult
    where
        B: for<'a> Buffer<'a, S, T>;
}

/// A trait for vector types.
pub trait Vector<T>: MetaData + ResizeOps
where
    T: RealNumber,
{
    /// The x-axis delta. If `domain` is time domain then `delta` is in `[s]`,
    /// in frequency domain `delta` is in `[Hz]`.
    fn delta(&self) -> T;

    /// Sets the x-axis delta. If `domain` is time domain then `delta` is in `[s]`,
    /// in frequency domain `delta` is in `[Hz]`.
    fn set_delta(&mut self, delta: T);

    /// The number of valid elements in the vector. This can be changed
    /// with the `Resize` trait.
    fn len(&self) -> usize;

    /// Indicates whether or not the vector is empty.
    fn is_empty(&self) -> bool;

    /// The number of valid points. If the vector is complex then every valid
    /// point consists of two floating point numbers,
    /// while for real vectors every point only consists of one floating point number.
    fn points(&self) -> usize;

    /// Gets the multi core settings which determine how the
    /// work is split between several cores if the amount of data
    /// gets larger.
    fn get_multicore_settings(&self) -> &MultiCoreSettings;

    /// Sets the multi core settings which determine how the
    /// work is split between several cores if the amount of data
    /// gets larger.
    fn set_multicore_settings(&mut self, settings: MultiCoreSettings);

    /// Gets the number of allocated elements in the underlying vector.
    /// The allocated length may be larger than the length of valid points.
    /// In most cases you likely want to have `len`or `points` instead.
    fn alloc_len(&self) -> usize;
}

/// Gets the meta data of a type. This can be used to create a new type with the same
/// meta data.
/// # Example
///
/// ```
/// use basic_dsp_vector::*;
/// let vector = vec!(1.0, 2.0, 3.0, 4.0, 5.0, 6.0).to_real_time_vec();
/// let meta_data = vector.get_meta_data();
/// let slice = &vector[0..2];
/// let slice = slice.to_dsp_vec(&meta_data);
/// assert_eq!(false, slice.is_complex());
/// ```
pub trait GetMetaData<T, N, D>
where
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    /// Gets a copy of the vector meta data. This can be used to create
    /// new types with the same meta data.
    fn get_meta_data(&self) -> TypeMetaData<T, N, D>;
}

impl<S, T, N, D> MetaData for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn domain(&self) -> DataDomain {
        self.domain.domain()
    }

    fn is_complex(&self) -> bool {
        self.number_space.is_complex()
    }
}

impl<T, N, D> MetaData for TypeMetaData<T, N, D>
where
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn domain(&self) -> DataDomain {
        self.domain.domain()
    }

    fn is_complex(&self) -> bool {
        self.number_space.is_complex()
    }
}

impl<S, T, N, D> ResizeOps for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn resize(&mut self, len: usize) -> VoidResult {
        if self.is_complex() && len % 2 != 0 {
            return Err(ErrorReason::InputMustHaveAnEvenLength);
        }

        if len > self.alloc_len() {
            r#try!(self.data.try_resize(len));
        }

        self.valid_len = len;

        Ok(())
    }
}

impl<S, T, N, D> ResizeBufferedOps<S, T> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn resize_b<B>(&mut self, buffer: &mut B, len: usize) -> VoidResult
    where
        B: for<'a> Buffer<'a, S, T>,
    {
        if self.is_complex() && len % 2 != 0 {
            return Err(ErrorReason::InputMustHaveAnEvenLength);
        }
        let res = self.resize(len);
        match res {
            Ok(_) => Ok(()),
            Err(_) => {
                let orig_len = self.len();
                let mut temp = buffer.borrow(len);
                temp[0..orig_len].clone_from_slice(&self[..]);
                temp.trade(&mut self.data);
                self.valid_len = len;
                Ok(())
            }
        }
    }
}

impl<S, T, N, D> Vector<T> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn delta(&self) -> T {
        self.delta
    }

    fn set_delta(&mut self, delta: T) {
        self.delta = delta;
    }

    fn len(&self) -> usize {
        self.valid_len
    }

    fn is_empty(&self) -> bool {
        self.valid_len == 0
    }

    fn points(&self) -> usize {
        self.valid_len / if self.is_complex() { 2 } else { 1 }
    }

    fn get_multicore_settings(&self) -> &MultiCoreSettings {
        &self.multicore_settings
    }

    fn set_multicore_settings(&mut self, settings: MultiCoreSettings) {
        self.multicore_settings = settings;
    }

    fn alloc_len(&self) -> usize {
        self.data.len()
    }
}

impl<S, T, N, D> GetMetaData<T, N, D> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn get_meta_data(&self) -> TypeMetaData<T, N, D> {
        TypeMetaData {
            number_space: self.number_space.clone(),
            domain: self.domain.clone(),
            delta: self.delta,
            multicore_settings: self.multicore_settings,
        }
    }
}

impl<S, T, N, D> Index<usize> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    type Output = T;

    fn index(&self, index: usize) -> &T {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = &slice[0..len];
        &slice[index]
    }
}

impl<S, T, N, D> IndexMut<usize> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn index_mut(&mut self, index: usize) -> &mut T {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = &mut slice[0..len];
        &mut slice[index]
    }
}

impl<S, T, N, D> Index<RangeFull> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    type Output = [T];

    fn index(&self, _index: RangeFull) -> &[T] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        &slice[0..len]
    }
}

impl<S, T, N, D> IndexMut<RangeFull> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn index_mut(&mut self, _index: RangeFull) -> &mut [T] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        &mut slice[0..len]
    }
}

impl<S, T, N, D> Index<RangeFrom<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    type Output = [T];

    fn index(&self, index: RangeFrom<usize>) -> &[T] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = &slice[0..len];
        &slice[index]
    }
}

impl<S, T, N, D> IndexMut<RangeFrom<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [T] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = &mut slice[0..len];
        &mut slice[index]
    }
}

impl<S, T, N, D> Index<RangeTo<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    type Output = [T];

    fn index(&self, index: RangeTo<usize>) -> &[T] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = &slice[0..len];
        &slice[index]
    }
}

impl<S, T, N, D> IndexMut<RangeTo<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [T] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = &mut slice[0..len];
        &mut slice[index]
    }
}

impl<S, T, N, D> Index<Range<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    type Output = [T];

    fn index(&self, index: Range<usize>) -> &[T] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = &slice[0..len];
        &slice[index]
    }
}

impl<S, T, N, D> IndexMut<Range<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn index_mut(&mut self, index: Range<usize>) -> &mut [T] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = &mut slice[0..len];
        &mut slice[index]
    }
}

impl<S, T, N, D> ComplexIndex<usize> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    type Output = Complex<T>;

    fn complex(&self, index: usize) -> &Complex<T> {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = array_to_complex(&slice[0..len]);
        &slice[index]
    }
}

impl<S, T, N, D> ComplexIndexMut<usize> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    fn complex_mut(&mut self, index: usize) -> &mut Complex<T> {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = array_to_complex_mut(&mut slice[0..len]);
        &mut slice[index]
    }
}

impl<S, T, N, D> ComplexIndex<RangeFull> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    type Output = [Complex<T>];

    fn complex(&self, _index: RangeFull) -> &[Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        array_to_complex(&slice[0..len])
    }
}

impl<S, T, N, D> ComplexIndexMut<RangeFull> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    fn complex_mut(&mut self, _index: RangeFull) -> &mut [Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        array_to_complex_mut(&mut slice[0..len])
    }
}

impl<S, T, N, D> ComplexIndex<RangeFrom<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    type Output = [Complex<T>];

    fn complex(&self, index: RangeFrom<usize>) -> &[Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = array_to_complex(&slice[0..len]);
        &slice[index]
    }
}

impl<S, T, N, D> ComplexIndexMut<RangeFrom<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    fn complex_mut(&mut self, index: RangeFrom<usize>) -> &mut [Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = array_to_complex_mut(&mut slice[0..len]);
        &mut slice[index]
    }
}

impl<S, T, N, D> ComplexIndex<RangeTo<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    type Output = [Complex<T>];

    fn complex(&self, index: RangeTo<usize>) -> &[Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = array_to_complex(&slice[0..len]);
        &slice[index]
    }
}

impl<S, T, N, D> ComplexIndexMut<RangeTo<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    fn complex_mut(&mut self, index: RangeTo<usize>) -> &mut [Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = array_to_complex_mut(&mut slice[0..len]);
        &mut slice[index]
    }
}

impl<S, T, N, D> ComplexIndex<Range<usize>> for DspVec<S, T, N, D>
where
    S: ToSlice<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    type Output = [Complex<T>];

    fn complex(&self, index: Range<usize>) -> &[Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice();
        let slice = array_to_complex(&slice[0..len]);
        &slice[index]
    }
}

impl<S, T, N, D> ComplexIndexMut<Range<usize>> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: ComplexNumberSpace,
    D: Domain,
{
    fn complex_mut(&mut self, index: Range<usize>) -> &mut [Complex<T>] {
        let len = self.valid_len;
        let slice = self.data.to_slice_mut();
        let slice = array_to_complex_mut(&mut slice[0..len]);
        &mut slice[index]
    }
}

#[cfg(test)]
mod tests {
    use super::super::*;

    #[test]
    fn len_of_vec() {
        let vec: Vec<f32> = vec![1.0, 2.0, 3.0];
        let dsp = vec.to_real_time_vec();
        assert_eq!(dsp.len(), 3);
    }

    #[test]
    fn len_of_slice() {
        let slice = [1.0, 5.0, 4.0];
        let dsp = slice.to_real_freq_vec();
        assert_eq!(dsp.len(), 3);
    }

    #[test]
    #[allow(unused_mut)]
    fn len_of_slice_mut() {
        let mut slice = [1.0, 5.0, 4.0];
        let dsp = slice.to_real_freq_vec();
        assert_eq!(dsp.len(), 3);
    }

    #[test]
    #[allow(unused_mut)]
    fn len_of_invalid_storage() {
        let mut slice = [1.0, 5.0, 4.0];
        let dsp = slice.to_complex_freq_vec();
        assert_eq!(dsp.len(), 0);
    }

    #[test]
    fn index_of_vec() {
        let vec = vec![1.0, 2.0, 3.0];
        let dsp = vec.to_real_time_vec();
        assert_eq!(dsp[..], [1.0, 2.0, 3.0]);
    }

    #[test]
    fn index_of_slice() {
        let slice = [1.0, 5.0, 4.0];
        let dsp = slice.to_real_time_vec();
        assert_eq!(dsp[..], [1.0, 5.0, 4.0]);
    }
}