1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
mod freq;
pub use self::freq::*;
mod time;
pub use self::time::*;
mod time_to_freq;
pub use self::time_to_freq::*;
mod freq_to_time;
pub use self::freq_to_time::*;
mod correlation;
pub use self::correlation::*;
mod convolution;
pub use self::convolution::*;
mod interpolation;
pub use self::interpolation::*;
mod real_interpolation;
pub use self::real_interpolation::*;

use super::{
    Buffer, BufferBorrow, Domain, DspVec, ErrorReason, GetMetaData, MetaData, NumberSpace,
    ToSliceMut, Vector, VoidResult,
};
use crate::gpu_support::GpuSupport;
use crate::inline_vector::InlineVector;
use crate::multicore_support::*;
use crate::numbers::*;
use rustfft::FFTplanner;
use crate::simd_extensions::*;
use std::fmt::Debug;
use std::ops::*;
use crate::{array_to_complex, array_to_complex_mut};

fn fft<S, T, N, D, B>(vec: &mut DspVec<S, T, N, D>, buffer: &mut B, reverse: bool)
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
    B: for<'a> Buffer<'a, S, T>,
{
    let len = vec.len();
    let mut temp = buffer.borrow(len);
    {
        let temp = temp.to_slice_mut();
        let signal = vec.data.to_slice_mut();
        if !T::has_gpu_support() || len < 10000 || !T::is_supported_fft_len(true, len) {
            let points = len / 2; // By two since vector is always complex
            let rbw = (T::from(points).unwrap()) * vec.delta;
            vec.delta = rbw;

            let fft = {
                let mut planner = FFTplanner::new(reverse);
                planner.plan_fft(points)
            };
            let spectrum = &mut temp[0..len];
            let signal = array_to_complex_mut(&mut signal[0..len]);
            let spectrum = array_to_complex_mut(spectrum);
            fft.process(signal, spectrum);
        } else {
            T::fft(true, &signal[0..len], &mut temp[0..len], reverse);
        }
    }

    temp.trade(&mut vec.data);
}

/// Transform a value on the x-axis the same way as a fft shift transforms the
/// x axis of a spectrum.
fn fft_swap_x<T: RealNumber>(is_fft_shifted: bool, x_value: T, x_max: T) -> T {
    if !is_fft_shifted {
        x_value / x_max
    } else if x_value <= T::zero() {
        let x_value = x_value / x_max;
        T::one() + x_value
    } else {
        let x_value = x_max - x_value + T::one();
        -x_value / x_max
    }
}

/// Creates shifted and reversed copies of the given data vector.
/// This function is especially designed for convolutions.
fn create_shifted_copies<O, T: RealNumber, Reg: SimdGeneric<T>>(
    vec: &O,
) -> InlineVector<InlineVector<Reg>>
where
    O: Vector<T> + Index<RangeFull, Output = [T]>,
{
    let step = if vec.is_complex() { 2 } else { 1 };
    let number_of_shifts = Reg::LEN / step;
    let mut shifted_copies = InlineVector::with_capacity(number_of_shifts);
    let mut i = 0;
    let len = vec.len();
    let data = &vec[..];
    let data = &data[0..len];
    while i < number_of_shifts {
        let mut data = data.iter().rev();

        // In general (number_of_shifts - i) indicates which prepared vector we need to use
        // if we later calculate end % number_of_shifts. Some examples:
        // number_of_shifts: 4, end: 13 -> mod: 1. The code will round end to the next
        // SIMD register
        // which ends at 16. In order to get back to 13 we therefore have to ignore 3 numbers.
        // Ignoring is done by shifting and inserting zeros. So in this example the correct
        // shift is 3
        // which equals number_of_shifts(4) - mod(1).
        // Now mod: 0 is a special case. This is because if we round up to the next SIMD
        // register then
        // we still don't need to add any offset and so for the case 0, 0 is the right shift.
        let shift = ((number_of_shifts - i) % number_of_shifts) * step;
        let min_len = vec.len() + shift;
        let len = (min_len + Reg::LEN - 1) / Reg::LEN;
        let mut copy: InlineVector<Reg> = InlineVector::with_capacity(len);

        let mut j = len * Reg::LEN;
        let mut k = 0;
        let mut current = InlineVector::of_size(T::zero(), Reg::LEN);
        while j > 0 {
            j -= step;
            if j < shift || j >= min_len {
                // Insert zeros
                current[k] = T::zero();
                k += 1;
                if k >= current.len() {
                    copy.push(Reg::load(&current[..], 0));
                    k = 0;
                }
                if step > 1 {
                    current[k] = T::zero();
                    k += 1;
                    if k >= current.len() {
                        copy.push(Reg::load(&current[..], 0));
                        k = 0;
                    }
                }
            } else if step > 1 {
                // Push complex number into vector
                let im = *data.next().unwrap();
                let re = *data.next().unwrap();
                current[k] = re;
                k += 1;
                if k >= current.len() {
                    copy.push(Reg::load(&current[..], 0));
                    k = 0;
                }
                current[k] = im;
                k += 1;
                if k >= current.len() {
                    copy.push(Reg::load(&current[..], 0));
                    k = 0;
                }
            } else {
                // Push real number into vector
                current[k] = *data.next().unwrap();
                k += 1;
                if k >= current.len() {
                    copy.push(Reg::load(&current[..], 0));
                    k = 0;
                }
            }
        }

        assert_eq!(k, 0);
        assert_eq!(copy.len(), len);
        shifted_copies.push(copy);
        i += 1;
    }
    shifted_copies
}

impl<S, T, N, D> DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn convolve_function_priv<B, TT, C, CMut, F>(
        &mut self,
        buffer: &mut B,
        ratio: T,
        conv_len: usize,
        convert: C,
        convert_mut: CMut,
        fun: F,
    ) where
        B: for<'a> Buffer<'a, S, T>,
        C: Fn(&[T]) -> &[TT],
        CMut: Fn(&mut [T]) -> &mut [TT],
        F: Fn(T) -> TT,
        TT: Zero + Mul<Output = TT> + Copy + Add<Output = TT>,
    {
        let len = self.len();
        let mut temp = buffer.borrow(len);
        {
            let data = self.data.to_slice();
            let temp = temp.to_slice_mut();
            let complex = convert(&data[0..len]);
            let dest = convert_mut(&mut temp[0..len]);
            let len = complex.len();
            let conv_len = if conv_len > len { len } else { conv_len };
            let sconv_len = conv_len as isize;
            for (i, num) in dest.iter_mut().enumerate() {
                let iter =
                    WrappingIterator::new(complex, i as isize - sconv_len - 1, 2 * conv_len + 1);
                let mut sum = TT::zero();
                let mut j = -(T::from(conv_len).unwrap());
                for c in iter {
                    sum = sum + c * fun(-j * ratio);
                    j = j + T::one();
                }
                *num = sum;
            }
        }

        temp.trade(&mut self.data);
    }

    /// Only calculate the convolution in the inverse range from the given range.
    /// This is intended to be used together with convolution implementations which
    /// are faster but don't handle the beginning and end of a vector correctly.
    fn convolve_vector_range<O, NO, DO>(
        &mut self,
        target: &mut [T],
        vector: &O,
        range: Range<usize>,
    ) where
        O: Vector<T> + Index<RangeFull, Output = [T]> + GetMetaData<T, NO, DO>,
        NO: NumberSpace,
        DO: Domain,
    {
        let points = self.points();
        let other_points = vector.points();
        let (other_start, other_end, full_conv_len, conv_len) = if other_points > points {
            let center = other_points / 2;
            let conv_len = points / 2;
            (center - conv_len, center + conv_len, points, conv_len)
        } else {
            (
                0,
                other_points,
                other_points,
                other_points - other_points / 2,
            )
        };
        let len = self.len();
        if self.is_complex() {
            let other = &vector[..];
            let data = self.data.to_slice();
            let other = array_to_complex(&other[0..vector.len()]);
            let complex = array_to_complex(&data[0..len]);
            let dest = array_to_complex_mut(&mut target[0..len]);
            let other_iter = &other[other_start..other_end];
            let conv_len = conv_len as isize;
            for (i, dest) in dest.iter_mut().enumerate().take(range.start / 2) {
                *dest = Self::convolve_iteration(
                    complex,
                    other_iter,
                    i as isize,
                    conv_len,
                    full_conv_len,
                );
            }
        } else {
            let other = &vector[..];
            let data = self.data.to_slice();
            let other = &other[0..vector.len()];
            let data = &data[0..len];
            let dest = &mut target[0..len];
            let other_iter = &other[other_start..other_end];
            let conv_len = conv_len as isize;
            for (i, dest) in dest.iter_mut().enumerate().take(range.start) {
                *dest =
                    Self::convolve_iteration(data, other_iter, i as isize, conv_len, full_conv_len);
            }
        }
    }

    fn convolve_signal_scalar<B, O, NO, DO>(&mut self, buffer: &mut B, vector: &O)
    where
        B: for<'a> Buffer<'a, S, T>,
        O: Vector<T> + Index<RangeFull, Output = [T]> + GetMetaData<T, NO, DO>,
        NO: NumberSpace,
        DO: Domain,
    {
        let points = self.points();
        let other_points = vector.points();
        let (other_start, other_end, full_conv_len, conv_len) = if other_points > points {
            let center = other_points / 2;
            let conv_len = points / 2;
            (center - conv_len, center + conv_len, points, conv_len)
        } else {
            (
                0,
                other_points,
                other_points,
                other_points - other_points / 2,
            )
        };
        if self.is_complex() {
            let len = self.len();
            let mut temp = buffer.borrow(len);
            {
                let other = &vector[..];
                let data = self.data.to_slice();
                let temp = temp.to_slice_mut();
                let other = array_to_complex(&other[0..vector.len()]);
                let complex = array_to_complex(&data[0..len]);
                let dest = array_to_complex_mut(&mut temp[0..len]);
                let other_iter = &other[other_start..other_end];
                let conv_len = conv_len as isize;
                Chunk::execute_with_range(
                    Complexity::Large,
                    &self.multicore_settings,
                    dest,
                    1,
                    (complex, other_iter),
                    move |dest, range, (complex, other_iter)| {
                        for (num, i) in dest.iter_mut().zip(range) {
                            *num = Self::convolve_iteration(
                                complex,
                                other_iter,
                                i as isize,
                                conv_len,
                                full_conv_len,
                            );
                        }
                    },
                );
            }
            temp.trade(&mut self.data);
        } else {
            let len = self.len();
            let mut temp = buffer.borrow(len);
            {
                let other = &vector[..];
                let data = self.data.to_slice();
                let temp = temp.to_slice_mut();
                let other = &other[0..vector.len()];
                let data = &data[0..len];
                let dest = &mut temp[0..len];
                let other_iter = &other[other_start..other_end];
                let conv_len = conv_len as isize;
                Chunk::execute_with_range(
                    Complexity::Large,
                    &self.multicore_settings,
                    dest,
                    1,
                    (data, other_iter),
                    move |dest, range, (data, other_iter)| {
                        for (num, i) in dest.iter_mut().zip(range) {
                            *num = Self::convolve_iteration(
                                data,
                                other_iter,
                                i as isize,
                                conv_len,
                                full_conv_len,
                            );
                        }
                    },
                );
            }
            temp.trade(&mut self.data);
        }
    }

    /// Convolves a vector of vectors (in this lib also considered a matrix) with a vector
    /// of impulse responses and stores the result in `target`.
    pub fn convolve_mat(
        matrix: &[&Self],
        impulse_response: &[&Self],
        target: &mut [T],
    ) -> VoidResult {
        // Since this function mainly exists to be used by the matrix lib
        // we just decide to ignore invalid calls.
        if impulse_response.len() != matrix.len() || impulse_response.is_empty() {
            return Err(ErrorReason::InvalidArgumentLength);
        }

        let expected_len = matrix[0].len();
        for v in &matrix[..] {
            if v.len() != expected_len {
                return Err(ErrorReason::InvalidArgumentLength);
            }
        }

        let expected_len = impulse_response[0].len();
        for v in &impulse_response[..] {
            if v.len() != expected_len {
                return Err(ErrorReason::InvalidArgumentLength);
            }
        }

        let points = matrix[0].points();
        let other_points = impulse_response[0].points();
        let (other_start, other_end, full_conv_len, conv_len) = if other_points > points {
            let center = other_points / 2;
            let conv_len = points / 2;
            (center - conv_len, center + conv_len, points, conv_len)
        } else {
            (
                0,
                other_points,
                other_points,
                other_points - other_points / 2,
            )
        };
        if matrix[0].is_complex() {
            let len = matrix[0].len();
            let others: InlineVector<&[T]> =
                impulse_response.iter().map(|v| v.data.to_slice()).collect();
            let data_vecs: InlineVector<&[T]> = matrix.iter().map(|v| v.data.to_slice()).collect();
            let others: InlineVector<&[Complex<T>]> = others
                .iter()
                .map(|o| {
                    let c = array_to_complex(&o[0..impulse_response[0].len()]);
                    &c[other_start..other_end]
                })
                .collect();
            let data_vecs: InlineVector<&[Complex<T>]> = data_vecs
                .iter()
                .map(|o| array_to_complex(&o[0..impulse_response[0].len()]))
                .collect();
            let dest = array_to_complex_mut(&mut target[0..len]);
            let conv_len = conv_len as isize;
            for (num, i) in dest.iter_mut().zip(0..) {
                *num = Self::convolve_mat_iteration(
                    &data_vecs[..],
                    &others[..],
                    i,
                    conv_len,
                    full_conv_len,
                );
            }
        } else {
            let len = matrix[0].len();
            let others: InlineVector<&[T]> =
                impulse_response.iter().map(|v| v.data.to_slice()).collect();
            let data_vecs: InlineVector<&[T]> = matrix.iter().map(|v| v.data.to_slice()).collect();
            let others: InlineVector<&[T]> =
                others.iter().map(|o| &o[other_start..other_end]).collect();
            let data_vecs: InlineVector<&[T]> = data_vecs.iter().map(|o| &o[0..len]).collect();
            let dest = &mut target[0..len];
            let conv_len = conv_len as isize;
            for (num, i) in dest.iter_mut().zip(0..) {
                *num = Self::convolve_mat_iteration(
                    &data_vecs[..],
                    &others[..],
                    i,
                    conv_len,
                    full_conv_len,
                );
            }
        }

        Ok(())
    }

    #[inline]
    fn convolve_iteration<TT>(
        data: &[TT],
        other_iter: &[TT],
        i: isize,
        conv_len: isize,
        full_conv_len: usize,
    ) -> TT
    where
        TT: Zero + Clone + Copy + Add<Output = TT> + Mul<Output = TT>,
    {
        let data_iter = ReverseWrappingIterator::new(data, i + conv_len, full_conv_len);
        let mut sum = TT::zero();
        let iteration = data_iter.zip(other_iter);
        for (this, other) in iteration {
            sum = sum + this * (*other);
        }
        sum
    }

    #[inline]
    fn convolve_mat_iteration<TT>(
        matrix: &[&[TT]],
        imp_resp: &[&[TT]],
        i: isize,
        conv_len: isize,
        full_conv_len: usize,
    ) -> TT
    where
        TT: Zero + Clone + Copy + Add<Output = TT> + Mul<Output = TT> + Debug,
    {
        let mut sum = TT::zero();
        for (data, other_iter) in matrix.iter().zip(imp_resp.iter()) {
            let data_iter = ReverseWrappingIterator::new(data, i + conv_len, full_conv_len);
            let iteration = data_iter.zip(*other_iter);
            for (this, other) in iteration {
                sum = sum + this * (*other);
            }
        }

        sum
    }

    fn convolve_signal_simd<Reg: SimdGeneric<T>, B, O>(
        &mut self,
        _: RegType<Reg>,
        buffer: &mut B,
        vector: &O,
    ) where
        B: for<'a> Buffer<'a, S, T>,
        O: Vector<T> + Index<RangeFull, Output = [T]>,
    {
        if self.is_complex() {
            self.convolve_signal_simd_impl::<Reg, _, _, _, _, _, _, _>(
                buffer,
                vector,
                |x| array_to_complex(x),
                |x| array_to_complex_mut(x),
                |x, y| x.mul_complex(y),
                |x| x.sum_complex(),
            )
        } else {
            self.convolve_signal_simd_impl::<Reg, _, _, _, _, _, _, _>(
                buffer,
                vector,
                |x| x,
                |x| x,
                |x, y| x * y,
                |x| x.sum_real(),
            )
        }
    }

    /// SIMD optimizatino to convolve two vectors.
    /// Most of the parameters (convert, convert_mut, simd_mul, simd_sum) are used to have
    /// a single function for both real valued and complex valued vectors.
    fn convolve_signal_simd_impl<Reg, B, TT, O, C, CMut, RMul, RSum>(
        &mut self,
        buffer: &mut B,
        vector: &O,
        convert: C,
        convert_mut: CMut,
        simd_mul: RMul,
        simd_sum: RSum,
    ) where
        B: for<'a> Buffer<'a, S, T>,
        O: Vector<T> + Index<RangeFull, Output = [T]>,
        TT: Zero + Clone + Copy + Add<Output = TT> + Mul<Output = TT> + Send + Sync,
        C: Fn(&[T]) -> &[TT],
        CMut: Fn(&mut [T]) -> &mut [TT],
        RMul: Fn(Reg, Reg) -> Reg + Sync,
        RSum: Fn(Reg) -> TT + Sync,
        Reg: SimdGeneric<T>,
    {
        let points = self.points();
        let other_points = vector.points();
        assert!(other_points < points);
        let (full_conv_len, conv_len) = (other_points, other_points - other_points / 2);
        let len = self.len();
        let mut temp = buffer.borrow(len);
        {
            let other = &vector[..];
            let data = self.data.to_slice();
            let temp = temp.to_slice_mut();
            let points = self.points();
            let other = convert(&other[0..vector.len()]);
            let complex = convert(&data[0..len]);
            let dest = convert_mut(&mut temp[0..len]);
            let other_iter = &other[0..other_points];

            let shifts = create_shifted_copies(vector);

            // The next lines uses + $reg::LEN due to rounding of odd numbers
            let scalar_len = conv_len + Reg::LEN;
            let conv_len = conv_len as isize;

            let partition = Reg::calc_data_alignment_reqs(&data[0..len]);
            let step = if self.is_complex() { 2 } else { 1 };
            let scalar_left_points = partition.left / step;
            let simd = Reg::array_to_regs(partition.center(data));
            Chunk::execute_with_range(
                Complexity::Large,
                &self.multicore_settings,
                &mut dest[scalar_len..points - scalar_len],
                1,
                simd,
                move |dest_range, range, simd| {
                    let mut i = (scalar_len + range.start) as isize;
                    for num in dest_range {
                        let end = (i + conv_len) as usize - scalar_left_points;
                        let shift = end % shifts.len();
                        let end = (end + shifts.len() - 1) / shifts.len();
                        let mut sum = Reg::splat(T::zero());
                        let shifted = &shifts[shift];
                        let simd_iter = simd[end - shifted.len()..end].iter();
                        let iteration = simd_iter.zip(shifted.iter());
                        for (this, other) in iteration {
                            sum = sum + simd_mul(*this, *other);
                        }
                        (*num) = simd_sum(sum);
                        i += 1;
                    }
                },
            );
            for (i, num) in IndexedEdgeIteratorMut::new(dest, scalar_len, scalar_len) {
                *num = Self::convolve_iteration(
                    complex,
                    other_iter,
                    i as isize,
                    conv_len,
                    full_conv_len,
                );
            }
        }
        temp.trade(&mut self.data);
    }

    fn multiply_function_priv<TT, CMut, FA, F>(
        &mut self,
        is_symmetric: bool,
        is_fft_shifted: bool,
        ratio: T,
        convert_mut: CMut,
        function_arg: FA,
        fun: F,
    ) where
        CMut: Fn(&mut [T]) -> &mut [TT],
        FA: Copy + Sync + Send,
        F: Fn(FA, T) -> TT + 'static + Sync,
        TT: Zero + Mul<Output = TT> + Copy + Send + Sync + From<T>,
    {
        let two = T::one() + T::one();
        if !is_symmetric {
            let len = self.len();
            let points = self.points();
            let data = self.data.to_slice_mut();
            let converted = convert_mut(&mut data[0..len]);
            Chunk::execute_with_range(
                Complexity::Medium,
                &self.multicore_settings,
                converted,
                1,
                (ratio, function_arg),
                move |array, range, (ratio, arg)| {
                    let scale = TT::from(ratio);
                    let offset = if points % 2 != 0 { 1 } else { 0 };
                    let max = T::from(points - offset).unwrap() / two;
                    let mut j =
                        -(T::from(points - offset).unwrap()) / two + T::from(range.start).unwrap();
                    for num in array {
                        *num =
                            (*num) * scale * fun(arg, fft_swap_x(is_fft_shifted, j, max) * ratio);
                        j = j + T::one();
                    }
                },
            );
        } else {
            let len = self.len();
            let data = self.data.to_slice_mut();
            let converted = convert_mut(&mut data[0..len]);
            let points = converted.len();
            Chunk::execute_sym_pairs_with_range(
                Complexity::Medium,
                &self.multicore_settings,
                converted,
                1,
                (ratio, function_arg),
                move |array1, range1, array2, range2, (ratio, arg)| {
                    let two = T::from(2.0).unwrap();
                    assert!(array1.len() >= array2.len());
                    assert!(range1.end <= range2.start);
                    let scale = TT::from(ratio);
                    let len1 = array1.len();
                    let len2 = array2.len();
                    let offset = points % 2;
                    let max = T::from(points - offset).unwrap() / two;
                    let center = T::from(points - offset).unwrap() / two;
                    let mut j1 = -center + T::from(range1.start).unwrap();
                    let mut j2 = center - T::from(range2.end - 1).unwrap();
                    let mut i1 = 0;
                    let mut i2 = 0;
                    {
                        let mut iter1 = array1.iter_mut();
                        let mut iter2 = array2.iter_mut().rev();
                        while j1 < j2 {
                            let num = iter1.next().unwrap();
                            (*num) = (*num)
                                * scale
                                * fun(arg, fft_swap_x(is_fft_shifted, j1, max) * ratio);
                            j1 = j1 + T::one();
                            i1 += 1;
                        }
                        while j2 < j1 {
                            let num = iter2.next().unwrap();
                            (*num) = (*num)
                                * scale
                                * fun(arg, fft_swap_x(is_fft_shifted, j2, max) * ratio);
                            j2 = j2 + T::one();
                            i2 += 1;
                        }
                        // At this point we can be sure that `j1 == j2`
                        for (num1, num2) in iter1.zip(iter2) {
                            let arg = scale * fun(arg, fft_swap_x(is_fft_shifted, j1, max) * ratio);
                            *num1 = (*num1) * arg;
                            *num2 = (*num2) * arg;
                            j1 = j1 + T::one();
                        }
                        j2 = j1;
                    }
                    // Now we have to deal with differences in length
                    // `common_length` is the number of iterations we spent
                    // in the previous loop.
                    let pos1 = len1 - i1;
                    let pos2 = len2 - i2;
                    let common_length = pos1.min(pos2);
                    for num in &mut array1[i1 + common_length..len1] {
                        (*num) =
                            (*num) * scale * fun(arg, fft_swap_x(is_fft_shifted, j1, max) * ratio);
                        j1 = j1 + T::one();
                    }
                    for num in &mut array2[0..len2 - common_length - i2] {
                        (*num) =
                            (*num) * scale * fun(arg, fft_swap_x(is_fft_shifted, j2, max) * ratio);
                        j2 = j2 + T::one();
                    }
                },
            );
        }
    }
}

struct WrappingIterator<T>
where
    T: Clone,
{
    start: *const T,
    end: *const T,
    pos: *const T,
    count: usize,
}

impl<T> Iterator for WrappingIterator<T>
where
    T: Clone,
{
    type Item = T;

    fn next(&mut self) -> Option<T> {
        unsafe {
            if self.count == 0 {
                return None;
            }

            let mut n = self.pos;
            if n < self.end {
                n = n.offset(1);
            } else {
                n = self.start;
            }

            self.pos = n;
            self.count -= 1;
            Some((*n).clone())
        }
    }
}

impl<T> WrappingIterator<T>
where
    T: Clone,
{
    pub fn new(slice: &[T], pos: isize, iter_len: usize) -> Self {
        use std::isize;

        assert!(slice.len() <= isize::MAX as usize);
        let len = slice.len() as isize;
        let mut pos = pos % len;
        while pos < 0 {
            pos += len;
        }

        let start = slice.as_ptr();
        unsafe {
            WrappingIterator {
                start,
                end: start.offset(len - 1),
                pos: start.offset(pos),
                count: iter_len,
            }
        }
    }
}

struct ReverseWrappingIterator<T>
where
    T: Clone,
{
    start: *const T,
    end: *const T,
    pos: *const T,
    count: usize,
}

impl<T> Iterator for ReverseWrappingIterator<T>
where
    T: Clone,
{
    type Item = T;

    fn next(&mut self) -> Option<T> {
        unsafe {
            if self.count == 0 {
                return None;
            }

            let mut n = self.pos;
            if n > self.start {
                n = n.offset(-1);
            } else {
                n = self.end;
            }

            self.pos = n;
            self.count -= 1;
            Some((*n).clone())
        }
    }
}

impl<T> ReverseWrappingIterator<T>
where
    T: Clone,
{
    pub fn new(slice: &[T], pos: isize, iter_len: usize) -> Self {
        use std::isize;

        assert!(slice.len() <= isize::MAX as usize);
        let len = slice.len() as isize;
        let mut pos = pos % len;
        while pos < 0 {
            pos += len;
        }

        let start = slice.as_ptr();
        unsafe {
            ReverseWrappingIterator {
                start,
                end: start.offset(len - 1),
                pos: start.offset(pos),
                count: iter_len,
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::fft_swap_x;

    #[test]
    fn fft_swap_x_test() {
        let input = [-4.0, -3.0, -2.0, -1.0, 0.0, 1.0, 2.0, 3.0, 4.0];
        let expected = [0.0, 0.25, 0.5, 0.75, 1.0, -1.0, -0.75, -0.5, -0.25];
        let mut actual = [0.0; 9];
        for i in 0..actual.len() {
            actual[i] = fft_swap_x(true, input[i], 4.0);
        }
        assert_eq!(&actual, &expected);
    }
}