1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
use super::super::{
    Buffer, BufferBorrow, Domain, DspVec, ErrorReason, MetaData, NumberSpace, ResizeOps,
    ToSliceMut, Vector, VoidResult,
};
use crate::multicore_support::*;
use crate::numbers::*;
use std::mem;
use std::ptr;
use crate::{array_to_complex_mut, memcpy, memzero};

/// This trait allows to reorganize the data by changing positions of the individual elements.
pub trait ReorganizeDataOps<T>
where
    T: RealNumber,
{
    /// Reverses the data inside the vector.
    ///
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0).to_real_time_vec();
    /// vector.reverse();
    /// assert_eq!([8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], vector[..]);
    /// ```
    fn reverse(&mut self);

    /// This function swaps both halves of the vector. This operation is also called FFT shift
    /// Use it after a `plain_fft` to get a spectrum which is centered at `0 Hz`.
    ///
    /// `swap_halvesb` requires a buffer but performs faster.
    ///
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0).to_real_time_vec();
    /// vector.swap_halves();
    /// assert_eq!([5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0], vector[..]);
    /// ```
    fn swap_halves(&mut self);
}

/// An option which defines how a vector should be padded
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum PaddingOption {
    /// Appends zeros to the end of the vector.
    End,
    /// Surrounds the vector with zeros at the beginning and at the end.
    Surround,

    /// Inserts zeros in the center of the vector
    Center,
}

/// A trait to insert zeros into the data at some specified positions.
pub trait InsertZerosOps<T>
where
    T: RealNumber,
{
    /// Appends zeros add the end of the vector until the vector has the size given
    /// in the points argument.
    /// If `points` smaller than the `self.len()` then this operation won't do anything, however
    /// in future it will raise an error.
    ///
    /// Note: Each point is two floating point numbers if the vector is complex.
    /// Note2: Adding zeros to the signal changes its power. If this function is used to
    /// zero pad to a power
    /// of 2 in order to speed up FFT calculation then it might be necessary to multiply it
    /// with `len_after/len_before`\
    /// so that the spectrum shows the expected power. Of course this is depending
    /// on the application.
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0).to_real_time_vec();
    /// vector.zero_pad(4, PaddingOption::End).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 2.0, 0.0, 0.0], vector[..]);
    /// let mut vector = vec!(1.0, 2.0).to_complex_time_vec();
    /// vector.zero_pad(2, PaddingOption::End).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 2.0, 0.0, 0.0], vector[..]);
    /// ```
    fn zero_pad(&mut self, points: usize, option: PaddingOption) -> VoidResult;

    /// Interleaves zeros `factor - 1`times after every vector element, so that the resulting
    /// vector will have a length of `self.len() * factor`.
    ///
    /// Note: Remember that each complex number consists of two floating points and interleaving
    /// will take that into account.
    ///
    /// If factor is 0 (zero) then `self` will be returned.
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0).to_real_time_vec();
    /// vector.zero_interleave(2);
    /// assert_eq!([1.0, 0.0, 2.0, 0.0], vector[..]);
    /// let mut vector = vec!(1.0, 2.0, 3.0, 4.0).to_complex_time_vec();
    /// vector.zero_interleave(2).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0], vector[..]);
    /// ```
    fn zero_interleave(&mut self, factor: u32) -> VoidResult;
}

/// A trait to insert zeros into the data at some specified positions. A buffer is used
/// for types which can't be resized and/or to speed up the calculation.
pub trait InsertZerosOpsBuffered<S, T>
where
    T: RealNumber,
    S: ToSliceMut<T>,
{
    /// Appends zeros add the end of the vector until the vector has the size given in the
    /// points argument.
    /// If `points` smaller than the `self.len()` then this operation will return an error.
    ///
    /// Note: Each point is two floating point numbers if the vector is complex.
    /// Note2: Adding zeros to the signal changes its power. If this function is used to
    /// zero pad to a power
    /// of 2 in order to speed up FFT calculation then it might be necessary to multiply it
    /// with `len_after/len_before`\
    /// so that the spectrum shows the expected power. Of course this is depending on the
    /// application.
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0).to_real_time_vec();
    /// let mut buffer = SingleBuffer::new();
    /// vector.zero_pad_b(&mut buffer, 4, PaddingOption::End).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 2.0, 0.0, 0.0], vector[..]);
    /// let mut vector = vec!(1.0, 2.0).to_complex_time_vec();
    /// vector.zero_pad_b(&mut buffer, 2, PaddingOption::End).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 2.0, 0.0, 0.0], vector[..]);
    /// ```
    fn zero_pad_b<B>(&mut self, buffer: &mut B, points: usize, option: PaddingOption) -> VoidResult
    where
        B: for<'a> Buffer<'a, S, T>;

    /// Interleaves zeros `factor - 1`times after every vector element, so that the resulting
    /// vector will have a length of `self.len() * factor`.
    ///
    /// Note: Remember that each complex number consists of two floating points and interleaving
    /// will take that into account.
    ///
    /// If factor is 0 (zero) then `self` will be returned.
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector = vec!(1.0, 2.0).to_real_time_vec();
    /// let mut buffer = SingleBuffer::new();
    /// vector.zero_interleave_b(&mut buffer, 2);
    /// assert_eq!([1.0, 0.0, 2.0, 0.0], vector[..]);
    /// let mut vector = vec!(1.0, 2.0, 3.0, 4.0).to_complex_time_vec();
    /// vector.zero_interleave_b(&mut buffer, 2);
    /// assert_eq!([1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0], vector[..]);
    /// ```
    fn zero_interleave_b<B>(&mut self, buffer: &mut B, factor: u32)
    where
        B: for<'a> Buffer<'a, S, T>;
}

/// Splits the data into several smaller pieces of equal size.
pub trait SplitOps {
    /// Splits the vector into several smaller vectors. `self.len()` must be dividable by
    /// `targets.len()` without a remainder and this condition must be true too
    /// `targets.len() > 0`.
    /// # Failures
    /// TransRes may report the following `ErrorReason` members:
    ///
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `targets.len()`
    ///
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut vector =
    ///     vec!(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0).to_real_time_vec();
    /// let mut split = &mut
    ///     [&mut Vec::new().to_real_time_vec(),
    ///      &mut Vec::new().to_real_time_vec()];
    /// vector.split_into(split).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 3.0, 5.0, 7.0, 9.0], split[0][..]);
    /// ```
    fn split_into(&self, targets: &mut [&mut Self]) -> VoidResult;
}

/// Merges several pieces of equal size into one data chunk.
pub trait MergeOps {
    /// Merges several vectors into `self`. All vectors must have the same size and
    /// at least one vector must be provided.
    /// # Failures
    /// TransRes may report the following `ErrorReason` members:
    ///
    /// 1. `InvalidArgumentLength`: if `sources.len() == 0`
    ///
    /// # Example
    ///
    /// ```
    /// use basic_dsp_vector::*;
    /// let mut parts = &mut
    ///     [&vec!(1.0, 2.0).to_real_time_vec(),
    ///      &vec!(1.0, 2.0).to_real_time_vec()];
    /// let mut vector = Vec::new().to_real_time_vec();
    /// vector.merge(parts).expect("Ignoring error handling in examples");
    /// assert_eq!([1.0, 1.0, 2.0, 2.0], vector[..]);
    /// ```
    fn merge(&mut self, sources: &[&Self]) -> VoidResult;
}

fn reverse_array<T>(data: &mut [T])
where
    T: Copy,
{
    let len = data.len();
    // +1 makes sure that for odd numbers the first `lo` gets the extra item
    // (which is later on ignored)
    let (lo, up) = data.split_at_mut((len + 1) / 2);
    for (lo, up) in lo.iter_mut().zip(up.iter_mut().rev()) {
        mem::swap(lo, up);
    }
}

impl<S, T, N, D> ReorganizeDataOps<T> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn reverse(&mut self) {
        let len = self.len();
        if self.is_complex() {
            let data = self.data.to_slice_mut();
            let data = array_to_complex_mut(&mut data[0..len]);
            reverse_array(data);
        } else {
            let data = self.data.to_slice_mut();
            reverse_array(&mut data[0..len]);
        }
    }

    fn swap_halves(&mut self) {
        self.swap_halves_priv(true);
    }
}

macro_rules! zero_interleave {
    ($self_: ident, $buffer: ident, $step: ident, $tuple: expr) => {{
        if $step <= 1 {
            return;
        }

        let step = $step as usize;
        let old_len = $self_.len();
        let new_len = step * old_len;
        $self_.valid_len = new_len;
        let mut target = $buffer.borrow(new_len);
        {
            let target = target.to_slice_mut();
            let source = &$self_.data.to_slice();
            Chunk::from_src_to_dest(
                Complexity::Small,
                &$self_.multicore_settings,
                &source[0..old_len],
                $tuple,
                &mut target[0..new_len],
                $tuple * step,
                (),
                move |original, range, target, _arg| {
                    // Zero target
                    let ptr = &mut target[0] as *mut T;
                    unsafe {
                        ptr::write_bytes(ptr, 0, new_len);
                    }
                    let skip = step * $tuple;
                    let mut i = 0;
                    let mut j = range.start;
                    while i < target.len() {
                        let original_ptr = &original[j];
                        let target_ptr = &mut target[i];
                        unsafe {
                            ptr::copy(original_ptr, target_ptr, $tuple);
                        }

                        j += $tuple;
                        i += skip;
                    }
                },
            );
        }

        target.trade(&mut $self_.data);
    }};
}

impl<S, T, N, D> InsertZerosOps<T> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn zero_pad(&mut self, points: usize, option: PaddingOption) -> VoidResult {
        let len_before = self.len();
        let is_complex = self.is_complex();
        let step = if is_complex { 2 } else { 1 };
        let len = points * step;
        if len <= len_before {
            return Err(ErrorReason::InvalidArgumentLength);
        }

        r#try!(self.resize(len));
        let data = self.data.to_slice_mut();
        match option {
            PaddingOption::End => {
                // Zero target
                memzero(data, len_before..len);
                Ok(())
            }
            PaddingOption::Surround => {
                let diff = (len - len_before) / step;
                let mut right = (diff - 1) / 2;
                let mut left = diff - right;
                if is_complex {
                    right *= 2;
                    left *= 2;
                }

                memcpy(data, 0..len_before, left);
                if right > 0 {
                    memzero(data, len - right..len);
                }
                memzero(data, 0..left);
                Ok(())
            }
            PaddingOption::Center => {
                let points_before = len_before / step;
                let mut right = (points_before - 1) / 2;
                let mut left = points_before - right;
                if is_complex {
                    right *= 2;
                    left *= 2;
                }

                if right > 0 {
                    memcpy(data, left..left + right, len - right);
                }

                memzero(data, left..len - right);
                Ok(())
            }
        }
    }

    fn zero_interleave(&mut self, factor: u32) -> VoidResult {
        let len_before = self.len();
        let is_complex = self.is_complex();
        let factor = factor as usize;
        let len = len_before * factor;
        if len < len_before {
            return Ok(());
        }

        r#try!(self.resize(len));

        if is_complex {
            let data = self.data.to_slice_mut();
            let data = array_to_complex_mut(data);
            for j in 0..len / 2 {
                let i = len / 2 - 1 - j;
                if i % factor == 0 {
                    data[i] = data[i / factor];
                } else {
                    data[i] = Complex::<T>::new(T::zero(), T::zero());
                }
            }
        } else {
            let data = self.data.to_slice_mut();
            for j in 0..len {
                let i = len - 1 - j;
                if i % factor == 0 {
                    data[i] = data[i / factor];
                } else {
                    data[i] = T::zero();
                }
            }
        }

        Ok(())
    }
}

impl<S, T, N, D> InsertZerosOpsBuffered<S, T> for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn zero_pad_b<B>(&mut self, buffer: &mut B, points: usize, option: PaddingOption) -> VoidResult
    where
        B: for<'a> Buffer<'a, S, T>,
    {
        let len_before = self.len();
        let is_complex = self.is_complex();
        let len = if is_complex { 2 * points } else { points };
        if len <= len_before {
            return Err(ErrorReason::InvalidArgumentLength);
        }

        let mut target = buffer.borrow(len);
        {
            let data = self.data.to_slice();
            let target = target.to_slice_mut();
            self.valid_len = len;
            match option {
                PaddingOption::End => {
                    // Zero target
                    target[0..len_before].copy_from_slice(&data[0..len_before]);
                    memzero(target, len_before..len);
                }
                PaddingOption::Surround => {
                    let diff = (len - len_before) / if is_complex { 2 } else { 1 };
                    let mut right = (diff) / 2;
                    let mut left = diff - right;
                    if is_complex {
                        right *= 2;
                        left *= 2;
                    }

                    target[left..left + len_before].copy_from_slice(&data[0..len_before]);
                    if right > 0 {
                        memzero(target, len - right..len);
                    }
                    memzero(target, 0..left);
                }
                PaddingOption::Center => {
                    let step = if is_complex { 2 } else { 1 };
                    let points_before = len_before / step;
                    let mut right = points_before / 2;
                    let mut left = points_before - right;
                    if is_complex {
                        right *= 2;
                        left *= 2;
                    }

                    target[len - right..len].copy_from_slice(&data[len_before - right..len_before]);
                    target[0..left].copy_from_slice(&data[0..left]);
                    memzero(target, left..len - len_before);
                }
            }
        }

        target.trade(&mut self.data);
        Ok(())
    }

    fn zero_interleave_b<B>(&mut self, buffer: &mut B, factor: u32)
    where
        B: for<'a> Buffer<'a, S, T>,
    {
        if self.is_complex() {
            zero_interleave!(self, buffer, factor, 2)
        } else {
            zero_interleave!(self, buffer, factor, 1)
        }
    }
}

impl<S, T, N, D> SplitOps for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn split_into(&self, targets: &mut [&mut Self]) -> VoidResult {
        let num_targets = targets.len();
        let data_length = self.len();
        if num_targets == 0 || data_length % num_targets != 0 {
            return Err(ErrorReason::InvalidArgumentLength);
        }

        for t in targets.iter_mut() {
            r#try!(t.resize(data_length / num_targets));
        }

        let data = &self.data.to_slice();
        if self.is_complex() {
            for i in 0..(data_length / 2) {
                let target = targets[i % num_targets].data.to_slice_mut();
                let pos = i / num_targets;
                target[2 * pos] = data[2 * i];
                target[2 * pos + 1] = data[2 * i + 1];
            }
        } else {
            for (i, d) in data.iter().enumerate() {
                let target = targets[i % num_targets].data.to_slice_mut();
                let pos = i / num_targets;
                target[pos] = *d;
            }
        }

        Ok(())
    }
}

impl<S, T, N, D> MergeOps for DspVec<S, T, N, D>
where
    S: ToSliceMut<T>,
    T: RealNumber,
    N: NumberSpace,
    D: Domain,
{
    fn merge(&mut self, sources: &[&Self]) -> VoidResult {
        {
            let num_sources = sources.len();
            if num_sources == 0 {
                return Err(ErrorReason::InvalidArgumentLength);
            }

            for src in sources.iter().take(num_sources).skip(1) {
                if sources[0].len() != src.len() {
                    return Err(ErrorReason::InvalidArgumentLength);
                }
            }

            r#try!(self.resize(sources[0].len() * num_sources));

            let data_length = self.len();
            let is_complex = self.is_complex();
            let data = self.data.to_slice_mut();
            if is_complex {
                for i in 0..(data_length / 2) {
                    let source = sources[i % num_sources].data.to_slice();
                    let pos = i / num_sources;
                    data[2 * i] = source[2 * pos];
                    data[2 * i + 1] = source[2 * pos + 1];
                }
            } else {
                for (i, d) in data.iter_mut().enumerate() {
                    let source = sources[i % num_sources].data.to_slice();
                    let pos = i / num_sources;
                    *d = source[pos];
                }
            }
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::super::super::*;

    #[test]
    fn swap_halves_real_even_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0].to_real_time_vec();
        v.swap_halves();
        assert_eq!(&v[..], &[3.0, 4.0, 1.0, 2.0]);
    }

    #[test]
    fn swap_halves_real_odd_test() {
        let mut v =
            vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0].to_real_time_vec();
        v.swap_halves();
        assert_eq!(
            &v[..],
            &[7.0, 8.0, 9.0, 10.0, 11.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
        );
    }

    #[test]
    fn swap_halves_complex_even_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0].to_complex_time_vec();
        v.swap_halves();
        assert_eq!(&v[..], &[5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0]);
    }

    #[test]
    fn swap_halves_complex_odd_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.swap_halves();
        assert_eq!(&v[..], &[7.0, 8.0, 9.0, 10.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
    }

    #[test]
    fn zero_pad_end_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.zero_pad(9, PaddingOption::End).unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_surround_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.zero_pad(10, PaddingOption::Surround).unwrap();
        let expected = [
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0,
            0.0, 0.0, 0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_center_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.zero_pad(10, PaddingOption::Center).unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.0,
            8.0, 9.0, 10.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_b_center_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_pad_b(&mut buffer, 10, PaddingOption::Center)
            .unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.0,
            8.0, 9.0, 10.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_surround_odd_signal_test() {
        let mut v =
            vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0].to_real_time_vec();
        v.zero_pad(20, PaddingOption::Surround).unwrap();
        // The expected result is required so that the convolution theorem holds true
        // (mul in freq is the same as conv)
        let expected = [
            0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 0.0,
            0.0, 0.0, 0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_b_end_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_pad_b(&mut buffer, 9, PaddingOption::End).unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_b_surround_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_pad_b(&mut buffer, 10, PaddingOption::Surround)
            .unwrap();
        let expected = [
            0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0,
            0.0, 0.0, 0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_b_surround_odd_signal_test() {
        let mut v = vec![
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
        ]
        .to_complex_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_pad_b(&mut buffer, 10, PaddingOption::Surround)
            .unwrap();
        let expected = [
            0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 0.0,
            0.0, 0.0, 0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_on_slice_fail_test() {
        let a: Box<[f64]> = Box::new([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]);
        let mut v = a.to_complex_time_vec();
        assert_eq!(
            v.zero_pad(9, PaddingOption::End),
            Err(ErrorReason::TypeCanNotResize)
        );
    }

    #[test]
    fn zero_pad_on_slice_shrinked_test() {
        let a: Box<[f64]> = Box::new([
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 11.0, 12.0,
            13.0, 14.0,
        ]);
        let mut v = a.to_complex_time_vec();
        v.resize(10).unwrap();
        v.zero_pad(9, PaddingOption::End).unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
            0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_surround_overlap_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.zero_pad(8, PaddingOption::Surround).unwrap();
        let expected = [
            0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 0.0, 0.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_pad_center_overlap_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0].to_complex_time_vec();
        v.zero_pad(8, PaddingOption::Center).unwrap();
        let expected = [
            1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 7.0, 8.0, 9.0, 10.0,
        ];
        assert_eq!(&v[..], &expected);
    }

    #[test]
    fn zero_interleave_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0].to_real_time_vec();
        v.zero_interleave(2).unwrap();
        assert_eq!(&v[..], &[1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0]);
    }

    #[test]
    fn zero_interleave_even_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0].to_real_time_vec();
        v.zero_interleave(2).unwrap();
        assert_eq!(&v[..], &[1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0]);
    }

    #[test]
    fn zero_interleave_b_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0, 5.0].to_real_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_interleave_b(&mut buffer, 2);
        assert_eq!(&v[..], &[1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0]);
    }

    #[test]
    fn zero_interleave_complex_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0].to_complex_time_vec();
        v.zero_interleave(2).unwrap();
        assert_eq!(&v[..], &[1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0]);
    }

    #[test]
    fn zero_interleave_b_complex_test() {
        let mut v = vec![1.0, 2.0, 3.0, 4.0].to_complex_time_vec();
        let mut buffer = SingleBuffer::new();
        v.zero_interleave_b(&mut buffer, 2);
        assert_eq!(&v[..], &[1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0]);
    }
}