1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//! Clients using other programming languages should use the functions
//! in this mod. Please refer to the other chapters of the help for documentation of the functions.
extern crate basic_dsp_vector;
extern crate num_complex;

pub mod facade32;
pub mod facade64;
use basic_dsp_vector::{VoidResult, SingleBuffer, TransRes, PaddingOption, GenDspVec, ScalarResult,
                       ErrorReason};
use basic_dsp_vector::window_functions::*;
use basic_dsp_vector::conv_types::*;
use basic_dsp_vector::numbers::RealNumber;
use num_complex::Complex;

pub struct InteropVec<T>
    where T: RealNumber
{
    buffer: SingleBuffer<T>,
    vec: GenDspVec<Vec<T>, T>,
}

impl<T> InteropVec<T>
    where T: RealNumber
{
    pub fn convert_vec<F>(mut self, op: F) -> VectorInteropResult<InteropVec<T>>
        where F: Fn(&mut GenDspVec<Vec<T>, T>, &mut SingleBuffer<T>) -> VoidResult
    {
        let result = op(&mut self.vec, &mut self.buffer);
        match result {
            Ok(()) => {
                let vector = Box::new(self);
                let result_code = get_error_marker(&vector);
                VectorInteropResult{ vector, result_code }
            },
            Err(res) => {
                VectorInteropResult {
                    vector: Box::new(self),
                    result_code: translate_error(res),
                }
            }
        }
    }

    pub fn trans_vec<F>(self, op: F) -> VectorInteropResult<InteropVec<T>>
        where F: Fn(GenDspVec<Vec<T>, T>, &mut SingleBuffer<T>) -> TransRes<GenDspVec<Vec<T>, T>>
    {
        let mut buffer = self.buffer;
        let vec = self.vec;
        let result = op(vec, &mut buffer);
        match result {
            Ok(vec) => {
                let vector = Box::new(InteropVec {
                    vec: vec,
                    buffer: buffer,
                });
                let result_code = get_error_marker(&vector);
                VectorInteropResult {
                    vector,
                    result_code,
                }
            }
            Err((err, vec)) => {
                VectorInteropResult {
                    vector: Box::new(InteropVec {
                        vec: vec,
                        buffer: buffer,
                    }),
                    result_code: translate_error(err),
                }
            }
        }
    }

    pub fn convert_scalar<F, TT>(&self, op: F, default: TT) -> ScalarInteropResult<TT>
        where F: Fn(&GenDspVec<Vec<T>, T>) -> ScalarResult<TT>
    {
        let result = op(&self.vec);
        match result {
            Ok(res) => {
                ScalarInteropResult {
                    result: res,
                    result_code: get_error_marker(&self),
                }
            }
            Err(res) => {
                ScalarInteropResult {
                    result: default,
                    result_code: translate_error(res),
                }
            }
        }
    }

    pub fn decompose(self) -> (GenDspVec<Vec<T>, T>, SingleBuffer<T>) {
        (self.vec, self.buffer)
    }
}

pub fn convert_void(result: VoidResult) -> i32 {
    match result {
        Ok(()) => 9,
        Err(err) => translate_error(err),
    }
}

/// Error codes:
///
/// -1. Operation isn't valid for the given vector types, check real/complex and time/freq data
/// 1. VectorsMustHaveTheSameSize
/// 2. VectorMetaDataMustAgree
/// 3. VectorMustBeComplex
/// 4. VectorMustBeReal
/// 5. VectorMustBeInTimeDomain
/// 6. VectorMustBeInFrquencyDomain
/// 7. InvalidArgumentLength
/// 8. VectorMustBeConjSymmetric
/// 9. VectorMustHaveAnOddLength
/// 10. ArgumentFunctionMustBeSymmetric
/// 11. InvalidNumberOfArgumentsForCombinedOp
/// 12. VectorMustNotBeEmpty
///
/// all other values are undefined. If you see a value which isn't listed here then
/// please report a bug.
pub fn translate_error(reason: ErrorReason) -> i32 {
    match reason {
        ErrorReason::InputMustHaveTheSameSize => 1,
        ErrorReason::InputMetaDataMustAgree => 2,
        ErrorReason::InputMustBeComplex => 3,
        ErrorReason::InputMustBeReal => 4,
        ErrorReason::InputMustBeInTimeDomain => 5,
        ErrorReason::InputMustBeInFrequencyDomain => 6,
        ErrorReason::InvalidArgumentLength => 7,
        ErrorReason::InputMustBeConjSymmetric => 8,
        ErrorReason::InputMustHaveAnOddLength => 9,
        ErrorReason::ArgumentFunctionMustBeSymmetric => 10,
        ErrorReason::InvalidNumberOfArgumentsForCombinedOp => 11,
        ErrorReason::InputMustNotBeEmpty => 12,
        ErrorReason::InputMustHaveAnEvenLength => 13,
        ErrorReason::TypeCanNotResize => 14,
    }
}

/// Returns the error code depending on the error marker of a vector.
pub fn get_error_marker<T: RealNumber>(vec: &InteropVec<T>) -> i32 {
    if vec.vec.is_erroneous() { -1 } else { 0 }
}

pub fn translate_to_window_function<T>(value: i32) -> Box<WindowFunction<T>>
    where T: RealNumber
{
    if value == 0 {
        Box::new(TriangularWindow)
    } else {
        Box::new(HammingWindow::default())
    }
}

pub fn translate_to_real_convolution_function<T>(value: i32,
                                                 rolloff: T)
                                                 -> Box<RealImpulseResponse<T>>
    where T: RealNumber
{
    if value == 0 {
        Box::new(SincFunction::new())
    } else {
        Box::new(RaisedCosineFunction::new(rolloff))
    }
}

pub fn translate_to_real_frequency_response<T>(value: i32,
                                               rolloff: T)
                                               -> Box<RealFrequencyResponse<T>>
    where T: RealNumber
{
    if value == 0 {
        Box::new(SincFunction::new())
    } else {
        Box::new(RaisedCosineFunction::new(rolloff))
    }
}

pub fn translate_to_padding_option(value: i32) -> PaddingOption {
    match value {
        0 => PaddingOption::End,
        1 => PaddingOption::Surround,
        _ => PaddingOption::Center,
    }
}

/// Result of a vector operation. Check the ```result_code```.
#[repr(C)]
pub struct VectorInteropResult<T> {
    /// This value is zero in case of error. All other values mean that an error
    /// occurred and the data in the vector might be unchanged or invalid.
    /// Error codes are described in `translate_error`.
    pub result_code: i32,

    /// A pointer to a data vector.
    pub vector: Box<T>,
}

/// Result of a vector operation. Check the ```result_code```.
#[repr(C)]
pub struct BinaryVectorInteropResult<T> {
    /// This value is zero in case of error. All other values mean that an error
    /// occurred and the data in the vector might be unchanged or invalid.
    /// Error codes are described in `translate_error`.
    pub result_code: i32,

    /// A pointer to a data vector.
    pub vector1: Box<T>,

    /// A pointer to a data vector.
    pub vector2: Box<T>,
}

/// Result of a vector operation. Check the ```result_code```.
#[repr(C)]
pub struct ScalarInteropResult<T>
    where T: Sized
{
    /// This value is zero in case of error. All other values mean that an error
    /// occurred and the data in the vector might be unchanged or invalid.
    /// Error codes are described in `translate_error`.
    pub result_code: i32,

    /// The result
    pub result: T,
}

/// A window function which can be constructed outside this crate.
struct ForeignWindowFunction<T>
    where T: RealNumber
{
    /// The window function
    pub window_function: extern "C" fn(*const std::os::raw::c_void, usize, usize) -> T,

    /// The data which is passed to the window function
    ///
    /// Actual data type is a `const* c_void`, but Rust doesn't allow that because it's
    /// unsafe so we store
    /// it as `usize` and transmute it when necessary. Callers should make very sure safety
    /// is guaranteed.
    pub window_data: usize,

    /// Indicates whether this function is symmetric around 0 or not.
    /// Symmetry is defined as `self.window(x) == self.window(-x)`.
    pub is_symmetric: bool,
}

impl<T> WindowFunction<T> for ForeignWindowFunction<T>
    where T: RealNumber
{
    fn is_symmetric(&self) -> bool {
        self.is_symmetric
    }

    fn window(&self, idx: usize, points: usize) -> T {
        let fun = self.window_function;
        fun(self.window_data as *const std::os::raw::c_void, idx, points)
    }
}

/// A real function which can be constructed outside this crate.
struct ForeignRealConvolutionFunction<T>
    where T: RealNumber
{
    /// The function
    pub conv_function: extern "C" fn(*const std::os::raw::c_void, T) -> T,

    /// The data which is passed to the function.
    ///
    /// Actual data type is a `const* c_void`, but Rust doesn't allow that
    /// because it's unsafe so we store
    /// it as `usize` and transmute it when necessary. Callers should make
    /// very sure safety is guaranteed.
    pub conv_data: usize,

    /// Indicates whether this function is symmetric around 0 or not.
    /// Symmetry is defined as `self.calc(x) == self.calc(-x)`.
    pub is_symmetric: bool,
}

impl<T> RealImpulseResponse<T> for ForeignRealConvolutionFunction<T>
    where T: RealNumber
{
    fn is_symmetric(&self) -> bool {
        self.is_symmetric
    }

    fn calc(&self, x: T) -> T {
        let fun = self.conv_function;
        fun(self.conv_data as *const std::os::raw::c_void, x)
    }
}

impl<T> RealFrequencyResponse<T> for ForeignRealConvolutionFunction<T>
    where T: RealNumber
{
    fn is_symmetric(&self) -> bool {
        self.is_symmetric
    }

    fn calc(&self, x: T) -> T {
        let fun = self.conv_function;
        fun(self.conv_data as *const std::os::raw::c_void, x)
    }
}

/// A complex function which can be constructed outside this crate.
struct ForeignComplexConvolutionFunction<T>
    where T: RealNumber
{
    /// The function
    pub conv_function: extern "C" fn(*const std::os::raw::c_void, T) -> Complex<T>,

    /// The data which is passed to the window function
    ///
    /// Actual data type is a `const* c_void`, but Rust doesn't allow that
    /// because it's unsafe so we store
    /// it as `usize` and transmute it when necessary. Callers should make very
    /// sure safety is guaranteed.
    pub conv_data: usize,

    /// Indicates whether this function is symmetric around 0 or not.
    /// Symmetry is defined as `self.calc(x) == self.calc(-x)`.
    pub is_symmetric: bool,
}

impl<T> ComplexImpulseResponse<T> for ForeignComplexConvolutionFunction<T>
    where T: RealNumber
{
    fn is_symmetric(&self) -> bool {
        self.is_symmetric
    }

    fn calc(&self, x: T) -> Complex<T> {
        let fun = self.conv_function;
        fun(self.conv_data as *const std::os::raw::c_void, x)
    }
}

impl<T> ComplexFrequencyResponse<T> for ForeignComplexConvolutionFunction<T>
    where T: RealNumber
{
    fn is_symmetric(&self) -> bool {
        self.is_symmetric
    }

    /// Indicates whether this function is symmetric around 0 or not.
    /// Symmetry is defined as `self.calc(x) == self.calc(-x)`.
    fn calc(&self, x: T) -> Complex<T> {
        let fun = self.conv_function;
        fun(self.conv_data as *const std::os::raw::c_void, x)
    }
}