1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
use std::result;
use num::complex::Complex;
use super::super::RealNumber;
use super::{
    ComplexTimeVector,
    RealTimeVector,
    GenericDataVector,
    RealFreqVector,
    ComplexFreqVector  
};

/// DataVector gives access to the basic properties of all data vectors
///
/// A DataVector allocates memory if necessary. It will however never shrink/free memory unless it's 
/// deleted and dropped.
pub trait DataVector<T> : Sized
    where T : RealNumber
{
    /// Gives direct access to the underlying data sequence. It's recommended to use the `Index functions .
	/// For users outside of Rust: It's discouraged to hold references to this array while executing operations on the vector,
	/// since the vector may decide at any operation to invalidate the array. 
	fn data(&self) -> &[T];
	
	/// The x-axis delta. If `domain` is time domain then `delta` is in `[s]`, in frequency domain `delta` is in `[Hz]`.
	fn delta(&self) -> T;
	
	/// The domain in which the data vector resides. Basically specifies the x-axis and the type of operations which
	/// are valid on this vector.
	fn domain(&self) -> DataVectorDomain;
	
	/// Indicates whether the vector contains complex data. This also specifies the type of operations which are valid
	/// on this vector.
	fn is_complex(&self) -> bool;
	
	/// The number of valid elements in the the vector.
	fn len(&self) -> usize;
    
    /// Sets the vector length to the given length. 
    /// If `self.len() < len` then the value of the new elements is undefined.
    fn set_len(&mut self, len: usize);
	
	/// The number of valid points. If the vector is complex then every valid point consists of two floating point numbers,
	/// while for real vectors every point only consists of one floating point number.
	fn points(&self) -> usize;
	
	/// Gets the number of allocated elements in the underlying vector.
	/// The allocated length may be larger than the length of valid points. 
	/// In most cases you likely want to have `len`or `points` instead.
	fn allocated_len(&self) -> usize;
}

/// The domain of a data vector
#[derive(Copy)]
#[derive(Clone)]
#[derive(PartialEq)]
#[derive(Debug)]
pub enum DataVectorDomain {
	/// Time domain, the x-axis is in [s]
	Time,
	/// Frequency domain, the x-axis in in [Hz]
    Frequency
}

/// This trait allows to change a vector type. The operations will
/// convert a vector to a different type and set `self.len()` to zero.
/// However `self.allocated_len()` will remain unchanged. The use case for this
/// is to allow to reuse the memory of a vector for different operations.
pub trait RededicateVector<T> : DataVector<T>
    where T: RealNumber {
    /// Make `self` a complex time vector
    /// # Example
	///
	/// ```
	/// use basic_dsp::{ComplexFreqVector32, ComplexVectorOperations, RededicateVector, DataVector, DataVectorDomain};
	/// let complex = ComplexFreqVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let real = complex.phase().expect("Ignoring error handling in examples");
    /// let complex = real.rededicate_as_complex_time_vector(2.0);
	/// assert_eq!(true, complex.is_complex());
    /// assert_eq!(DataVectorDomain::Time, complex.domain());
    /// assert_eq!(0, complex.len());
    /// assert_eq!(2, complex.allocated_len());
	/// ```
    fn rededicate_as_complex_time_vector(self, delta: T) -> ComplexTimeVector<T>;
    
    /// Make `self` a complex frequency vector
    fn rededicate_as_complex_freq_vector(self, delta: T) -> ComplexFreqVector<T>;
    
    /// Make `self` a real time vector
    fn rededicate_as_real_time_vector(self, delta: T) -> RealTimeVector<T>;
    
    /// Make `self` a real freq vector
    fn rededicate_as_real_freq_vector(self, delta: T) -> RealFreqVector<T>;
    
    /// Make `self` a generic vector
    fn rededicate_as_generic_vector(self, is_complex: bool, domain: DataVectorDomain, delta: T) -> GenericDataVector<T>;
}

/// An operation which multiplies each vector element with a constant
pub trait Scale<T> : Sized
    where T: Sized {
    /// Multiplies the vector element with a scalar.
    fn scale(self, offset: T) -> VecResult<Self>;
}

/// An operation which adds a constant to each vector element
pub trait Offset<T> : Sized
    where T: Sized {
    /// Adds a scalar to each vector element.
    fn offset(self, offset: T) -> VecResult<Self>;
}

/// Defines all operations which are valid on all `DataVectors`.
pub trait GenericVectorOperations<T>: DataVector<T> 
    where T : RealNumber {
	/// Calculates the sum of `self + summand`. It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorsMustHaveTheSameSize`: `self` and `summand` must have the same size
    /// 2. `VectorMetaDataMustAgree`: `self` and `summand` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let vector2 = RealTimeVector32::from_array(&[10.0, 11.0]);
	/// let result = vector1.add_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([11.0, 13.0], result.data());
	/// ```
	fn add_vector(self, summand: &Self) -> VecResult<Self>;
    
    /// Calculates the sum of `self + summand`. `summand` may be smaller than `self` as long
    /// as `self.len() % summand.len() == 0`. THe result is the same as it would be if 
    /// you would repeat `summand` until it has the same length as `self`.
    /// It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `summand.points()`
    /// 2. `VectorMetaDataMustAgree`: `self` and `summand` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[10.0, 11.0, 12.0, 13.0]);
	/// let vector2 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector1.add_smaller_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([11.0, 13.0, 13.0, 15.0], result.data());
	/// ```
	fn add_smaller_vector(self, summand: &Self) -> VecResult<Self>;
	
	/// Calculates the difference of `self - subtrahend`. It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorsMustHaveTheSameSize`: `self` and `subtrahend` must have the same size
    /// 2. `VectorMetaDataMustAgree`: `self` and `subtrahend` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let vector2 = RealTimeVector32::from_array(&[10.0, 11.0]);
	/// let result = vector1.subtract_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([-9.0, -9.0], result.data());
	/// ```
	fn subtract_vector(self, subtrahend: &Self) -> VecResult<Self>;
    
    /// Calculates the sum of `self - subtrahend`. `subtrahend` may be smaller than `self` as long
    /// as `self.len() % subtrahend.len() == 0`. THe result is the same as it would be if 
    /// you would repeat `subtrahend` until it has the same length as `self`.
    /// It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `subtrahend.points()`
    /// 2. `VectorMetaDataMustAgree`: `self` and `subtrahend` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[10.0, 11.0, 12.0, 13.0]);
	/// let vector2 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector1.subtract_smaller_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([9.0, 9.0, 11.0, 11.0], result.data());
	/// ```
	fn subtract_smaller_vector(self, summand: &Self) -> VecResult<Self>;
	
	/// Calculates the product of `self * factor`. It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorsMustHaveTheSameSize`: `self` and `factor` must have the same size
    /// 2. `VectorMetaDataMustAgree`: `self` and `factor` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let vector2 = RealTimeVector32::from_array(&[10.0, 11.0]);
	/// let result = vector1.multiply_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([10.0, 22.0], result.data());
	/// ```
	fn multiply_vector(self, factor: &Self) -> VecResult<Self>;
    
    /// Calculates the sum of `self - factor`. `factor` may be smaller than `self` as long
    /// as `self.len() % factor.len() == 0`. THe result is the same as it would be if 
    /// you would repeat `factor` until it has the same length as `self`.
    /// It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `factor.points()`
    /// 2. `VectorMetaDataMustAgree`: `self` and `factor` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[10.0, 11.0, 12.0, 13.0]);
	/// let vector2 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector1.multiply_smaller_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([10.0, 22.0, 12.0, 26.0], result.data());
	/// ```
	fn multiply_smaller_vector(self, factor: &Self) -> VecResult<Self>;
	
	/// Calculates the quotient of `self / summand`. It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorsMustHaveTheSameSize`: `self` and `divisor` must have the same size
    /// 2. `VectorMetaDataMustAgree`: `self` and `divisor` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[10.0, 22.0]);
	/// let vector2 = RealTimeVector32::from_array(&[2.0, 11.0]);
	/// let result = vector1.divide_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([5.0, 2.0], result.data());
	/// ```
	fn divide_vector(self, divisor: &Self) -> VecResult<Self>;
    
    /// Calculates the sum of `self - divisor`. `divisor` may be smaller than `self` as long
    /// as `self.len() % divisor.len() == 0`. THe result is the same as it would be if 
    /// you would repeat `divisor` until it has the same length as `self`.
    /// It consumes self and returns the result.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `divisor.points()`
    /// 2. `VectorMetaDataMustAgree`: `self` and `divisor` must be in the same domain and number space
    /// 
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector1 = RealTimeVector32::from_array(&[10.0, 12.0, 12.0, 14.0]);
	/// let vector2 = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector1.divide_smaller_vector(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!([10.0, 6.0, 12.0, 7.0], result.data());
	/// ```
	fn divide_smaller_vector(self, divisor: &Self) -> VecResult<Self>;
	
	/// Appends zeros add the end of the vector until the vector has the size given in the points argument.
    /// If `points` smaller than the `self.len()` then this operation won't do anything.
	///
	/// Note: Each point is two floating point numbers if the vector is complex.
	/// # Example
	///
	/// ```
	/// use basic_dsp::{PaddingOption, RealTimeVector32, ComplexTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector.zero_pad(4, PaddingOption::End).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 0.0, 0.0], result.data());
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0]);
	/// let result = vector.zero_pad(2, PaddingOption::End).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 0.0, 0.0], result.data());
	/// ```
	fn zero_pad(self, points: usize, option: PaddingOption) -> VecResult<Self>;
    
    /// Reverses the data inside the vector.
    fn reverse(self) -> VecResult<Self>;
	
	/// Ineterleaves zeros `factor - 1`times after every vector element, so that the resulting
    /// vector will have a length of `self.len() * factor`.
	///
	/// Note: Remember that each complex number consists of two floating points and interleaving 
	/// will take that into account.
    ///
    /// If factor is 0 (zero) then `self` will be returned.
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, ComplexTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector.zero_interleave(2).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 0.0, 2.0, 0.0], result.data());
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.zero_interleave(2).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 0.0, 0.0, 3.0, 4.0, 0.0, 0.0], result.data());
	/// ```
	fn zero_interleave(self, factor: u32) -> VecResult<Self>;
	
	/// Calculates the delta of each elements to its previous element. This will decrease the vector length by one point. 
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[2.0, 3.0, 2.0, 6.0]);
	/// let result = vector.diff().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, -1.0, 4.0], result.data());
	/// ```
	fn diff(self) -> VecResult<Self>;
	
	/// Calculates the delta of each elements to its previous element. The first element
	/// will remain unchanged.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[2.0, 3.0, 2.0, 6.0]);
	/// let result = vector.diff_with_start().expect("Ignoring error handling in examples");
	/// assert_eq!([2.0, 1.0, -1.0, 4.0], result.data());
	/// ```
	fn diff_with_start(self) -> VecResult<Self>;
	
	/// Calculates the cumulative sum of all elements. This operation undoes the `diff_with_start`operation.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[2.0, 1.0, -1.0, 4.0]);
	/// let result = vector.cum_sum().expect("Ignoring error handling in examples");
	/// assert_eq!([2.0, 3.0, 2.0, 6.0], result.data());
	/// ```
	fn cum_sum(self) -> VecResult<Self>;
    
    /// Gets the square root of all vector elements.
	///
	/// The sqrt of a negative number gives NaN and not a complex vector.  
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// # use std::f32;
	/// let vector = RealTimeVector32::from_array(&[1.0, 4.0, 9.0, 16.0, 25.0]);
	/// let result = vector.sqrt().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 3.0, 4.0, 5.0], result.data());
	/// let vector = RealTimeVector32::from_array(&[-1.0]);
	/// let result = vector.sqrt().expect("Ignoring error handling in examples");
	/// assert!(result[0].is_nan());
	/// ```
	fn sqrt(self) -> VecResult<Self>;
	
	/// Squares all vector elements.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0, 5.0]);
	/// let result = vector.square().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 4.0, 9.0, 16.0, 25.0], result.data());
	/// ```
	fn square(self) -> VecResult<Self>;
	
	/// Calculates the n-th root of every vector element.
	///
	/// If the result would be a complex number then the vector will contain a NaN instead. So the vector
	/// will never convert itself to a complex vector during this operation.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 8.0, 27.0]);
	/// let result = vector.root(3.0).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 3.0], result.data());
	/// ```
	fn root(self, degree: T) -> VecResult<Self>;
	
	/// Raises every vector element to the given power.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0]);
	/// let result = vector.power(3.0).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 8.0, 27.0], result.data());
	/// ```
	fn power(self, exponent: T) -> VecResult<Self>;
	
	/// Calculates the natural logarithm to the base e for every vector element.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[2.718281828459045	, 7.389056, 20.085537]);
	/// let result = vector.logn().expect("Ignoring error handling in examples");
	/// let actual = result.data();
	/// let expected = &[1.0, 2.0, 3.0];
	/// assert_eq!(actual.len(), expected.len());
	/// for i in 0..actual.len() {
	///		assert!((actual[i] - expected[i]).abs() < 1e-4);
	/// }
	/// ```
	fn logn(self) -> VecResult<Self>;
	
	/// Calculates the natural exponential to the base e for every vector element.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0]);
	/// let result = vector.expn().expect("Ignoring error handling in examples");
	/// assert_eq!([2.71828182846, 7.389056, 20.085537], result.data());
	/// ```
	fn expn(self) -> VecResult<Self>;
	
	/// Calculates the logarithm to the given base for every vector element.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[10.0, 100.0, 1000.0]);
	/// let result = vector.log_base(10.0).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 3.0], result.data());
	/// ```
	fn log_base(self, base: T) -> VecResult<Self>;
	
	/// Calculates the exponential to the given base for every vector element.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0]);
	/// let result = vector.exp_base(10.0).expect("Ignoring error handling in examples");
	/// assert_eq!([10.0, 100.0, 1000.0], result.data());
	/// ```
	fn exp_base(self, base: T) -> VecResult<Self>;
    
    /// Calculates the sine of each element in radians.
    ///
    /// # Example
	///
	/// ```
    /// use std::f32;
    /// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
    /// let vector = RealTimeVector32::from_array(&[f32::consts::PI/2.0, -f32::consts::PI/2.0]);
    /// let result = vector.sin().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, -1.0], result.data());
    /// ```
    fn sin(self) -> VecResult<Self>;
    
    /// Calculates the cosine of each element in radians.
    ///
    /// # Example
	///
	/// ```
    /// use std::f32;
    /// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
    /// let vector = RealTimeVector32::from_array(&[2.0 * f32::consts::PI, f32::consts::PI]);
    /// let result = vector.cos().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, -1.0], result.data());
    /// ```
    fn cos(self) -> VecResult<Self>;
    
    /// Calculates the tangent of each element in radians.
    fn tan(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse sine of each element in radians.
    fn asin(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse cosine of each element in radians.
    fn acos(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse tangent of each element in radians.
    fn atan(self) -> VecResult<Self>;
    
    /// Calculates the hyperbolic sine each element in radians.
    fn sinh(self) -> VecResult<Self>;
    
    /// Calculates the hyperbolic cosine each element in radians.
    fn cosh(self) -> VecResult<Self>;
    
    /// Calculates the hyperbolic tangent each element in radians.
    fn tanh(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse hyperbolic sine of each element in radians.
    fn asinh(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse hyperbolic cosine of each element in radians.
    fn acosh(self) -> VecResult<Self>;
    
    /// Calculates the principal value of the inverse hyperbolic tangent of each element in radians.
    fn atanh(self) -> VecResult<Self>;
    
    /// This function swaps both halves of the vector. This operation is also called fft shift
    /// Use it after a `plain_fft` to get a spectrum which is centered at `0 Hz`.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
	/// let result = vector.swap_halves().expect("Ignoring error handling in examples");
	/// assert_eq!([5.0, 6.0, 7.0, 8.0, 1.0, 2.0, 3.0, 4.0], result.data());
	/// ```
    fn swap_halves(self) -> VecResult<Self>;
    
    /// Splits the vector into several smaller vectors. `self.len()` must be dividable by
    /// `targets.len()` without a remainder and this conidition must be true too `targets.len() > 0`.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: `self.points()` isn't dividable by `targets.len()`
    ///     
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
    /// let a = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0];
	/// let merge = RealTimeVector32::from_array(&a);
    /// let mut split = &mut 
    ///     [Box::new(RealTimeVector32::empty()), 
    ///     Box::new(RealTimeVector32::empty())];
    /// merge.split_into(split).unwrap();
    /// assert_eq!([1.0, 3.0, 5.0, 7.0, 9.0], split[0].data());
	/// ```
    fn split_into(&self, targets: &mut [Box<Self>]) -> VoidResult;
    
    /// Merges several vectors into `self`. All vectors must have the same size and
    /// at least one vector must be provided.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `InvalidArgumentLength`: if `sources.len() == 0`
    ///    
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::empty();
    /// let parts = &[
    ///     Box::new(RealTimeVector32::from_array(&[1.0, 2.0])),
    ///     Box::new(RealTimeVector32::from_array(&[1.0, 2.0]))];
	/// let merged = vector.merge(parts).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 1.0, 2.0, 2.0], merged.data());
	/// ```
    fn merge(self, sources: &[Box<Self>]) -> VecResult<Self>;
    
    /// Overrides the data in the vector with the given data. This may also change 
    /// the vectors length (however not the allocated length).
    ///
    /// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, GenericVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0]);
    /// let result = vector.override_data(&[5.0, 7.0]).expect("Ignoring error handling in examples");
	/// assert_eq!(&[5.0, 7.0], result.data());
	/// ```
    fn override_data(self, data: &[T]) -> VecResult<Self>;
}

/// Defines all operations which are valid on `DataVectors` containing real data.
/// # Failures
/// All operations in this trait fail with `VectorMustBeReal` if the vector isn't in the real number space.
pub trait RealVectorOperations<T> : DataVector<T> 
    where T : RealNumber {
	type ComplexPartner;
	
	/// Adds a scalar to the vector.
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector.real_offset(2.0).expect("Ignoring error handling in examples");
	/// assert_eq!([3.0, 4.0], result.data());
	/// ```
	fn real_offset(self, offset: T) -> VecResult<Self>;
	
	/// Multiplies the vector with a scalar.
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector.real_scale(4.0).expect("Ignoring error handling in examples");
	/// assert_eq!([4.0, 8.0], result.data());
	/// ```
	fn real_scale(self, offset: T) -> VecResult<Self>;
	
	/// Gets the absolute value of all vector elements.
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, -2.0]);
	/// let result = vector.abs().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0], result.data());
	/// ```
	fn abs(self) -> VecResult<Self>;
		
	/// Converts the real vector into a complex vector.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0]);
	/// let result = vector.to_complex().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 0.0, 2.0, 0.0], result.data());
	/// ```
	fn to_complex(self) -> VecResult<Self::ComplexPartner>;
    
	/// Each value in the vector is devided by the divisor and the remainder is stored in the resulting 
	/// vector. This the same a modulo operation or to phase wrapping.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
	/// let result = vector.wrap(4.0).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0], result.data());
	/// ```
	fn wrap(self, divisor: T) -> VecResult<Self>;
	
	/// This function corrects the jumps in the given vector which occur due to wrap or modulo operations.
	/// This will undo a wrap operation only if the deltas are smaller than half the divisor.
	///
	/// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations, DataVector};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 0.0, 1.0, 2.0, 3.0, 0.0]);
	/// let result = vector.unwrap(4.0).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], result.data());
	/// ```
	fn unwrap(self, divisor: T) -> VecResult<Self>;
    
    /// Calculates the dot product of self and factor. Self and factor remain unchanged.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorMetaDataMustAgree`: `self` and `factor` must be in the same domain and number space
    /// 
    /// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations};
	/// let vector1 = RealTimeVector32::from_array(&[9.0, 2.0, 7.0]);
	/// let vector2 = RealTimeVector32::from_array(&[4.0, 8.0, 10.0]);
	/// let result = vector1.real_dot_product(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!(122.0, result);
	/// ```  
    fn real_dot_product(&self, factor: &Self) -> ScalarResult<T>;
    
    /// Calculates the statistics of the data contained in the vector.
    /// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0, 5.0]);
	/// let result = vector.real_statistics();
	/// assert_eq!(result.sum, 15.0);
    /// assert_eq!(result.count, 5);
    /// assert_eq!(result.average, 3.0);
    /// assert!((result.rms - 3.3166).abs() < 1e-4);
    /// assert_eq!(result.min, 1.0);
    /// assert_eq!(result.min_index, 0);
    /// assert_eq!(result.max, 5.0);
    /// assert_eq!(result.max_index, 4);
	/// ```  
    fn real_statistics(&self) -> Statistics<T>;
    
    /// Calculates the statistics of the data contained in the vector as if the vector would
    /// have been split into `len` pieces. `self.len` should be devisable by `len` without a remainder,
    /// but this isn't enforced by the implementation.
    /// # Example
	///
	/// ```
	/// use basic_dsp::{RealTimeVector32, RealVectorOperations};
	/// let vector = RealTimeVector32::from_array(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.real_statistics_splitted(2);
	/// assert_eq!(result[0].sum, 4.0);
    /// assert_eq!(result[1].sum, 6.0);
	/// ```  
    fn real_statistics_splitted(&self, len: usize) -> Vec<Statistics<T>>;
}

/// Defines all operations which are valid on `DataVectors` containing complex data.
/// # Failures
/// All operations in this trait fail with `VectorMustBeComplex` if the vector isn't in the complex number space.
pub trait ComplexVectorOperations<T> : DataVector<T> 
    where T : RealNumber {
	type RealPartner;
    
    /// Gets `self.data()` as complex array.
    fn complex_data(&self) -> &[Complex<T>];
	
	/// Adds a scalar to the vector.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// use num::complex::Complex32;
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.complex_offset(Complex32::new(-1.0, 2.0)).expect("Ignoring error handling in examples");
	/// assert_eq!([0.0, 4.0, 2.0, 6.0], result.data());
	/// # }
	/// ```
	fn complex_offset(self, offset: Complex<T>) -> VecResult<Self>;
	
	/// Multiplies the vector with a scalar.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// use num::complex::Complex32;
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.complex_scale(Complex32::new(-1.0, 2.0)).expect("Ignoring error handling in examples");
	/// assert_eq!([-5.0, 0.0, -11.0, 2.0], result.data());
	/// # }
	/// ```
	fn complex_scale(self, factor: Complex<T>) -> VecResult<Self>;
    
    /// Multiplies each vector element with `exp(j*(a*idx*self.delta() + b))`
    /// where `a` and `b` are arguments and `idx` is the index of the data points
    /// in the vector ranging from `0 to self.points() - 1`. `j` is the imaginary number and
    /// `exp` the exponential function.
    ///
    /// This method can be used to perform a frequency shift in time domain.
    ///
    /// # Example
	///
	/// ```
    /// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.multiply_complex_exponential(2.0, 3.0).expect("Ignoring error handling in examples");
    /// let expected = [-1.2722325, -1.838865, 4.6866837, -1.7421241];
    /// let result = result.data();
    /// for i in 0..expected.len() {
    ///     assert!((result[i] - expected[i]).abs() < 1e-4);   
    /// }
	/// ```
    fn multiply_complex_exponential(mut self, a: T, b: T) -> VecResult<Self>;
	
	/// Gets the absolute value or magnitude of all vector elements.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// use num::complex::Complex32;
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[3.0, -4.0, -3.0, 4.0]);
	/// let result = vector.magnitude().expect("Ignoring error handling in examples");
	/// assert_eq!([5.0, 5.0], result.data());
	/// # }
	/// ```
	fn magnitude(self) -> VecResult<Self::RealPartner>;
	
	/// Copies the absolute value or magnitude of all vector elements into the given target vector.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, RealTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[3.0, -4.0, -3.0, 4.0]);
	/// let mut result = RealTimeVector32::from_array(&[0.0]);
	/// vector.get_magnitude(&mut result).expect("Ignoring error handling in examples");
	/// assert_eq!([5.0, 5.0], result.data());
	/// # }
	/// ```
	fn get_magnitude(&self, destination: &mut Self::RealPartner) -> VoidResult;
	
	/// Gets the square root of the absolute value of all vector elements.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// use num::complex::Complex32;
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[3.0, -4.0, -3.0, 4.0]);
	/// let result = vector.magnitude_squared().expect("Ignoring error handling in examples");
	/// assert_eq!([25.0, 25.0], result.data());
	/// # }
	/// ```
	fn magnitude_squared(self) -> VecResult<Self::RealPartner>;
	
	/// Calculates the complex conjugate of the vector. 
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.complex_conj().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, -2.0, 3.0, -4.0], result.data());
	/// # }
	/// ```
	fn complex_conj(self) -> VecResult<Self>;
	
	/// Gets all real elements.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.to_real().expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 3.0], result.data());
	/// # }
	/// ```
	fn to_real(self) -> VecResult<Self::RealPartner>;
	
	/// Gets all imag elements.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0]);
	/// let result = vector.to_imag().expect("Ignoring error handling in examples");
	/// assert_eq!([2.0, 4.0], result.data());
	/// # }
	/// ```
	fn to_imag(self) -> VecResult<Self::RealPartner>;
	
	/// Copies all real elements into the given vector.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{RealTimeVector32, ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let mut result = RealTimeVector32::from_array(&[0.0, 0.0]);
	/// let vector = ComplexTimeVector32::from_real_imag(&[1.0, 3.0], &[2.0, 4.0]);
	/// vector.get_real(&mut result).expect("Ignoring error handling in examples");
	/// assert_eq!([1.0, 3.0], result.data());
	/// # }
	/// ```
	fn get_real(&self, destination: &mut Self::RealPartner) -> VoidResult;
	
	/// Copies all imag elements into the given vector.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{RealTimeVector32, ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let mut result = RealTimeVector32::from_array(&[0.0, 0.0]);
	/// let vector = ComplexTimeVector32::from_real_imag(&[1.0, 3.0], &[2.0, 4.0]);
	/// vector.get_imag(&mut result).expect("Ignoring error handling in examples");
	/// assert_eq!([2.0, 4.0], result.data());
	/// # }
	/// ```
	fn get_imag(&self, destination: &mut Self::RealPartner) -> VoidResult;
	
	/// Gets the phase of all elements in [rad].
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 0.0, 0.0, 4.0, -2.0, 0.0, 0.0, -3.0, 1.0, 1.0]);
	/// let result = vector.phase().expect("Ignoring error handling in examples");
	/// assert_eq!([0.0, 1.5707964, 3.1415927, -1.5707964, 0.7853982], result.data());
	/// # }
	/// ```
	fn phase(self) -> VecResult<Self::RealPartner>;
	
	/// Copies the phase of all elements in [rad] into the given vector.
	/// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
	/// use basic_dsp::{RealTimeVector32, ComplexTimeVector32, ComplexVectorOperations, DataVector};
	/// # fn main() { 
	/// let mut result = RealTimeVector32::from_array(&[0.0, 0.0]);
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 0.0, 0.0, 4.0, -2.0, 0.0, 0.0, -3.0, 1.0, 1.0]);
	/// vector.get_phase(&mut result).expect("Ignoring error handling in examples");
	/// assert_eq!([0.0, 1.5707964, 3.1415927, -1.5707964, 0.7853982], result.data());
	/// # }
	/// ```
	fn get_phase(&self, destination: &mut Self::RealPartner) -> VoidResult;
    
    /// Calculates the dot product of self and factor. Self and factor remain unchanged.
    /// # Failures
    /// VecResult may report the following `ErrorReason` members:
    /// 
    /// 1. `VectorMetaDataMustAgree`: `self` and `factor` must be in the same domain and number space
    /// 
    /// # Example
	///
	/// ```
    /// # extern crate num;
	/// # extern crate basic_dsp;
    /// # use num::complex::Complex32;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations};
	/// # fn main() { 
	/// let vector1 = ComplexTimeVector32::from_interleaved(&[9.0, 2.0, 7.0, 1.0]);
	/// let vector2 = ComplexTimeVector32::from_interleaved(&[4.0, 0.0, 10.0, 0.0]);
	/// let result = vector1.complex_dot_product(&vector2).expect("Ignoring error handling in examples");
	/// assert_eq!(Complex32::new(106.0, 18.0), result);
    /// }
	/// ```  
    fn complex_dot_product(&self, factor: &Self) -> ScalarResult<Complex<T>>;
    
    /// Calculates the statistics of the data contained in the vector.
    /// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
    /// # use num::complex::Complex32;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]);
	/// let result = vector.complex_statistics();
	/// assert_eq!(result.sum, Complex32::new(9.0, 12.0));
    /// assert_eq!(result.count, 3);
    /// assert_eq!(result.average, Complex32::new(3.0, 4.0));
    /// assert!((result.rms - Complex32::new(3.4027193, 4.3102784)).norm() < 1e-4);
    /// assert_eq!(result.min, Complex32::new(1.0, 2.0));
    /// assert_eq!(result.min_index, 0);
    /// assert_eq!(result.max, Complex32::new(5.0, 6.0));
    /// assert_eq!(result.max_index, 2);
    /// }
	/// ```  
    fn complex_statistics(&self) -> Statistics<Complex<T>>;
    
    /// Calculates the statistics of the data contained in the vector as if the vector would
    /// have been split into `len` pieces. `self.len` should be devisable by `len` without a remainder,
    /// but this isn't enforced by the implementation.
    /// # Example
	///
	/// ```
	/// # extern crate num;
	/// # extern crate basic_dsp;
    /// # use num::complex::Complex32;
	/// use basic_dsp::{ComplexTimeVector32, ComplexVectorOperations};
	/// # fn main() { 
	/// let vector = ComplexTimeVector32::from_interleaved(&[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]);
	/// let result = vector.complex_statistics_splitted(2);
	/// assert_eq!(result[0].sum, Complex32::new(6.0, 8.0));
    /// assert_eq!(result[1].sum, Complex32::new(10.0, 12.0));
    /// }
	/// ```  
    fn complex_statistics_splitted(&self, len: usize) -> Vec<Statistics<Complex<T>>>; 
    
    /// Gets the real and imaginary parts and stores them in the given vectors. 
    /// See [`get_phase`](trait.ComplexVectorOperations.html#tymethod.get_phase) and
    /// [`get_complex_abs`](trait.ComplexVectorOperations.html#tymethod.get_complex_abs) for further
    /// information.
    fn get_real_imag(&self, real: &mut Self::RealPartner, imag: &mut Self::RealPartner) -> VoidResult;
    
    /// Gets the magnitude and phase and stores them in the given vectors.
    /// See [`get_real`](trait.ComplexVectorOperations.html#tymethod.get_real) and
    /// [`get_imag`](trait.ComplexVectorOperations.html#tymethod.get_imag) for further
    /// information.
    fn get_mag_phase(&self, mag: &mut Self::RealPartner, phase: &mut Self::RealPartner) -> VoidResult;
    
    /// Overrides the `self` vectors data with the real and imaginary data in the given vectors.
    /// `real` and `imag` must have the same size.
    fn set_real_imag(self, real: &Self::RealPartner, imag: &Self::RealPartner) -> VecResult<Self>;
    
    /// Overrides the `self` vectors data with the magnitude and phase data in the given vectors.
    /// Note that `self` vector will immediately convert the data into a real and imaginary representation
    /// of the complex numbers which is its default format. 
    /// `mag` and `phase` must have the same size.
    fn set_mag_phase(self, mag: &Self::RealPartner, phase: &Self::RealPartner) -> VecResult<Self>;
}

/// Enumeration of all error reasons
#[derive(Copy)]
#[derive(Clone)]
#[derive(PartialEq)]
#[derive(Debug)]
pub enum ErrorReason {
    /// The operations requires all vectors to have the same size, 
    /// in most cases this means that the following must be true:
    /// `self.len()` == `argument.len()`
	VectorsMustHaveTheSameSize,
    
    /// The operations requires all vectors to have the same meta data
    /// in most cases this means that the following must be true:
    /// `self.is_complex()` == `argument.is_complex()` &&
    /// `self.domain()` == `argument.domain()` &&
    /// `self.delta()`== `argument.domain()`;
    /// Consider to convert one of the vectors so that this conidition is true.
    /// The necessary operations may include FFT/IFFT, complex/real conversion and resampling.
    VectorMetaDataMustAgree,
    
    /// The operation requires the vector to be complex.
    VectorMustBeComplex,
    
    /// The operation requires the vector to be real.
    VectorMustBeReal,
    
    /// The operation requires the vector to be in time domain.
    VectorMustBeInTimeDomain,
    
    /// The operation requires the vector to be in frequency domain.
    VectorMustBeInFrquencyDomain,
    
    /// The arguments have an invalid length to perform the operation. The
    /// operations documentation should have more information about the requirements.
    /// Please open a defect if this isn't the case.
    InvalidArgumentLength,
    
    /// The operations is only valid if the data vector contains half of a symmetric spectrum.
    /// The symmetry definition follows soon however more important is that the element at 0 Hz
    /// which happens to be the first vector element must be real. This is actually violated 
    /// if this error message appears and the rest of the definition is only listed here for
    /// completness.
    /// The required symmetry is that for every point `vector[x].conj() == vector[-x]`(pseudocode)
    /// where `x` is the x-axis position relativ to 0Hz and `conj` is the complex conjungate.
    VectorMustBeConjSymmetric,
    
    /// `self.points()` must be an odd number.
    VectorMustHaveAnOddLength,
    
    /// The function passed as argument must be symmetric
    ArgumentFunctionMustBeSymmetric
}

/// Result contains on success the vector. On failure it contains an error reason and an vector with invalid data
/// which still can be used in order to avoid memory allocation.
pub type VecResult<T> = result::Result<T, (ErrorReason, T)>;

/// Void/nothing in case of success or a reason in case of an error.
pub type VoidResult = result::Result<(), ErrorReason>;

/// Scalar result or a reason in case of an error.
pub type ScalarResult<T> = result::Result<T, ErrorReason>;

/// Statistics about the data in a vector
#[repr(C)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(PartialEq)]
#[derive(Debug)]
pub struct Statistics<T> {
    pub sum: T,
    pub count: usize,
    pub average: T,
    pub rms: T,
    pub min: T,
    pub min_index: usize,
    pub max: T,
    pub max_index: usize
}

/// An option which defines how a vector should be padded
#[derive(Copy)]
#[derive(Clone)]
#[derive(PartialEq)]
#[derive(Debug)]
pub enum PaddingOption {
	/// Appends zeros to the end of the vector.
	End,
	/// Surrounds the vector with zeros at the beginning and at the end.
    Surround,
    
    /// Inserts zeros in the center of the vector
    Center,
}