1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT file at the
// top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT
// or http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Thread-local reference-counted boxes (the `Cc<T>` type).
//!
//! The `Cc<T>` type provides shared ownership of an immutable value.
//! Destruction is deterministic, and will occur as soon as the last owner is
//! gone. It is marked as non-sendable because it avoids the overhead of atomic
//! reference counting.
//!
//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
//! to the box. A `Weak<T>` pointer can be upgraded to an `Cc<T>` pointer, but
//! will return `None` if the value has already been dropped.
//!
//! For example, a tree with parent pointers can be represented by putting the
//! nodes behind strong `Cc<T>` pointers, and then storing the parent pointers
//! as `Weak<T>` pointers.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. `Cc<T>` allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```rust
//! use bacon_rajan_cc::{Cc, Trace, Tracer};
//!
//! struct Owner {
//!     name: String
//!     // ...other fields
//! }
//!
//! impl Trace for Owner {
//!     // Note: nothing to trace since `Owner` doesn't own any Cc<T> things.
//!     fn trace(&mut self, _tracer: &mut Tracer) { }
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Cc<Owner>
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference counted Owner.
//!     let gadget_owner : Cc<Owner> = Cc::new(
//!             Owner { name: String::from("Gadget Man") }
//!     );
//!
//!     // Create Gadgets belonging to gadget_owner. To increment the reference
//!     // count we clone the `Cc<T>` object.
//!     let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() };
//!     let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() };
//!
//!     drop(gadget_owner);
//!
//!     // Despite dropping gadget_owner, we're still able to print out the name
//!     // of the Owner of the Gadgets. This is because we've only dropped the
//!     // reference count object, not the Owner it wraps. As long as there are
//!     // other `Cc<T>` objects pointing at the same Owner, it will remain
//!     // allocated. Notice that the `Cc<T>` wrapper around Gadget.owner gets
//!     // automatically dereferenced for us.
//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//!     // At the end of the method, gadget1 and gadget2 get destroyed, and with
//!     // them the last counted references to our Owner. Gadget Man now gets
//!     // destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! Owner → Gadget, we will run into problems: an `Cc<T>` pointer from Owner
//! → Gadget introduces a cycle between the objects. This means that their
//! reference counts can never reach 0, and the objects will remain allocated: a
//! memory leak. In order to get around this, we can use `Weak<T>` pointers.
//! These pointers don't contribute to the total count.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place: in order to end up with two objects that point at each other, one of
//! them needs to be mutable. This is problematic because `Cc<T>` enforces
//! memory safety by only giving out shared references to the object it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! object we wish to mutate in a `RefCell`, which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! `RefCell` enforces Rust's borrowing rules at runtime.  Read the `Cell`
//! documentation for more details on interior mutability.
//!
//! ```rust
//! use bacon_rajan_cc::{Cc, Weak, Trace, Tracer};
//! use std::cell::RefCell;
//!
//! struct Owner {
//!     name: String,
//!     gadgets: RefCell<Vec<Weak<Gadget>>>
//!     // ...other fields
//! }
//!
//! impl Trace for Owner {
//!     fn trace(&mut self, _tracer: &mut Tracer) { }
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Cc<Owner>
//!     // ...other fields
//! }
//!
//! impl Trace for Gadget {
//!     fn trace(&mut self, tracer: &mut Tracer) {
//!         tracer(&mut self.owner);
//!     }
//! }
//!
//! fn main() {
//!     // Create a reference counted Owner. Note the fact that we've put the
//!     // Owner's vector of Gadgets inside a RefCell so that we can mutate it
//!     // through a shared reference.
//!     let gadget_owner : Cc<Owner> = Cc::new(
//!             Owner {
//!                 name: "Gadget Man".to_string(),
//!                 gadgets: RefCell::new(Vec::new())
//!             }
//!     );
//!
//!     // Create Gadgets belonging to gadget_owner as before.
//!     let gadget1 = Cc::new(Gadget{id: 1, owner: gadget_owner.clone()});
//!     let gadget2 = Cc::new(Gadget{id: 2, owner: gadget_owner.clone()});
//!
//!     // Add the Gadgets to their Owner. To do this we mutably borrow from
//!     // the RefCell holding the Owner's Gadgets.
//!     gadget_owner.gadgets.borrow_mut().push(gadget1.clone().downgrade());
//!     gadget_owner.gadgets.borrow_mut().push(gadget2.clone().downgrade());
//!
//!     // Iterate over our Gadgets, printing their details out
//!     for gadget_opt in gadget_owner.gadgets.borrow().iter() {
//!
//!         // gadget_opt is a Weak<Gadget>. Since weak pointers can't guarantee
//!         // that their object is still allocated, we need to call upgrade()
//!         // on them to turn them into a strong reference. This returns an
//!         // Option, which contains a reference to our object if it still
//!         // exists.
//!         let gadget = gadget_opt.upgrade().unwrap();
//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//!     }
//!
//!     // At the end of the method, gadget_owner, gadget1 and gadget2 get
//!     // destroyed. There are now no strong (`Cc<T>`) references to the gadgets.
//!     // Once they get destroyed, the Gadgets get destroyed. This zeroes the
//!     // reference count on Gadget Man, so he gets destroyed as well.
//! }
//! ```

#![deny(missing_docs)]

extern crate core;
use core::cell::Cell;
use core::clone::Clone;
use core::cmp::{PartialEq, PartialOrd, Eq, Ord, Ordering};
use core::default::Default;
use core::fmt;
use core::hash::{Hasher, Hash};
use core::mem::forget;
use std::ptr::NonNull;
use core::ops::{Deref, Drop};
use core::option::Option;
use core::option::Option::{Some, None};
use core::ptr;
use core::result::Result;
use core::result::Result::{Ok, Err};

use std::alloc::{dealloc, Layout};

/// Tracing traits, types, and implementation.
pub mod trace;
pub use trace::{Trace, Tracer};

/// Implementation of cycle detection and collection.
pub mod collect;
pub use collect::{collect_cycles, number_of_roots_buffered};

mod cc_box_ptr;
use cc_box_ptr::CcBoxPtr;

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[doc(hidden)]
pub enum Color {
    /// In use or free.
    Black,

    /// Possible member of a cycle.
    Gray,

    /// Member of a garbage cycle.
    White,

    /// Possible root of cycle.
    Purple,

    /// Candidate cycle undergoing sigma-computation. Not yet in use.
    #[allow(dead_code)]
    Red,

    /// Candidate cycle awaiting epoch boundary. Not yet in use.
    #[allow(dead_code)]
    Orange,
}

#[derive(Debug)]
#[doc(hidden)]
pub struct CcBoxData {
    strong: Cell<usize>,
    weak: Cell<usize>,
    buffered: Cell<bool>,
    color: Cell<Color>,
}

#[derive(Debug)]
struct CcBox<T: Trace> {
    value: T,
    data: CcBoxData,
}

/// A reference-counted pointer type over an immutable value.
///
/// See the [module level documentation](./) for more details.
pub struct Cc<T: 'static + Trace> {
    // FIXME #12808: strange names to try to avoid interfering with field
    // accesses of the contained type via Deref
    _ptr: NonNull<CcBox<T>>,
}

impl<T: Trace> Cc<T> {
    /// Constructs a new `Cc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    /// ```
    pub fn new(value: T) -> Cc<T> {
        unsafe {
            Cc {
                // There is an implicit weak pointer owned by all the strong
                // pointers, which ensures that the weak destructor never frees
                // the allocation while the strong destructor is running, even
                // if the weak pointer is stored inside the strong one.
                _ptr: NonNull::new_unchecked(Box::into_raw(Box::new(CcBox {
                    value: value,
                    data: CcBoxData {
                        strong: Cell::new(1),
                        weak: Cell::new(1),
                        buffered: Cell::new(false),
                        color: Cell::new(Color::Black),
                    }
                }))),
            }
        }
    }

    /// Downgrades the `Cc<T>` to a `Weak<T>` reference.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// let weak_five = five.downgrade();
    /// ```
    pub fn downgrade(&self) -> Weak<T> {
        self.inc_weak();
        Weak { _ptr: self._ptr }
    }
}

impl<T: Trace> Cc<T> {
    unsafe fn release(&mut self) {
        debug_assert!(self.strong() == 0);
        self.data().color.set(Color::Black);

        // If it is in the buffer, then it will be freed later in the
        // `mark_roots` procedure.
        if self.buffered() {
            return;
        }

        self.free();
    }

    fn possible_root(&mut self) {
        debug_assert!(self.strong() > 0);

        if self.color() == Color::Purple {
            return;
        }

        self.data().color.set(Color::Purple);
        if self.buffered() {
            return;
        }

        self.data().buffered.set(true);
        let ptr : NonNull<CcBoxPtr> = self._ptr;
        collect::add_root(ptr);
    }
}

impl<T: 'static + Trace> Cc<T> {
    /// Returns true if there are no other `Cc` or `Weak<T>` values that share
    /// the same inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc;
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    /// assert_eq!(five.is_unique(), true);
    ///
    /// let another_five = five.clone();
    /// assert_eq!(five.is_unique(), false);
    /// assert_eq!(another_five.is_unique(), false);
    /// ```
    #[inline]
    pub fn is_unique(&self) -> bool {
        self.weak_count() == 0 && self.strong_count() == 1
    }

    /// Unwraps the contained value if the `Cc<T>` is unique.
    ///
    /// If the `Cc<T>` is not unique, an `Err` is returned with the same `Cc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let x = Cc::new(3);
    /// assert_eq!(x.try_unwrap(), Ok(3));
    ///
    /// let x = Cc::new(4);
    /// let _y = x.clone();
    /// assert_eq!(x.try_unwrap(), Err(Cc::new(4)));
    /// ```
    #[inline]
    pub fn try_unwrap(self) -> Result<T, Cc<T>> {
        if self.is_unique() {
            unsafe {
                // Copy the contained object.
                let val = ptr::read(&*self);
                // Destruct the box and skip our Drop. We can ignore the
                // refcounts because we know we're unique.
                dealloc(self._ptr.cast().as_ptr(), Layout::new::<CcBox<T>>());
                forget(self);
                Ok(val)
            }
        } else {
            Err(self)
        }
    }

    /// Returns a mutable reference to the contained value if the `Cc<T>` is
    /// unique.
    ///
    /// Returns `None` if the `Cc<T>` is not unique.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let mut x = Cc::new(3);
    /// *Cc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = x.clone();
    /// assert!(Cc::get_mut(&mut x).is_none());
    /// ```
    #[inline]
    pub fn get_mut(&mut self) -> Option<&mut T> {
        if self.is_unique() {
            let inner = unsafe { self._ptr.as_mut() };
            Some(&mut inner.value)
        } else {
            None
        }
    }

    /// Get the number of strong references to this value.
    #[inline]
    pub fn strong_count(&self) -> usize { self.strong() }

    /// Get the number of weak references to this value.
    #[inline]
    pub fn weak_count(&self) -> usize { self.weak() - 1 }
}

impl<T: 'static + Clone + Trace> Cc<T> {
    /// Make a mutable reference from the given `Cc<T>`.
    ///
    /// This is also referred to as a copy-on-write operation because the inner
    /// data is cloned if the reference count is greater than one.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let mut five = Cc::new(5);
    ///
    /// let mut_five = five.make_unique();
    /// ```
    #[inline]
    pub fn make_unique(&mut self) -> &mut T {
        if !self.is_unique() {
            *self = Cc::new((**self).clone())
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the `Cc<T>` itself to be `mut`, so we're returning the only possible
        // reference to the inner value.
        let inner = unsafe { self._ptr.as_mut() };
        &mut inner.value
    }
}

impl<T: Trace> Deref for Cc<T> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        if self.strong_count() > 0 {
            unsafe {
                &self._ptr.as_ref().value
            }
        } else {
            panic!("Invalid access during cycle collection");
        }
    }
}

impl<T: Trace> Drop for Cc<T> {
    /// Drops the `Cc<T>`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count becomes zero and the only other references are `Weak<T>` ones,
    /// `drop`s the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// {
    ///     let five = Cc::new(5);
    ///
    ///     // stuff
    ///
    ///     drop(five); // explicit drop
    /// }
    /// {
    ///     let five = Cc::new(5);
    ///
    ///     // stuff
    ///
    /// } // implicit drop
    /// ```
    fn drop(&mut self) {
        unsafe {
            if self.strong() > 0 {
                self.dec_strong();
                if self.strong() == 0 {
                    self.release();
                } else {
                    self.possible_root();
                }
            }
        }
    }
}

impl<T: Trace> Clone for Cc<T> {

    /// Makes a clone of the `Cc<T>`.
    ///
    /// When you clone an `Cc<T>`, it will create another pointer to the data and
    /// increase the strong reference counter.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Cc<T> {
        self.inc_strong();
        Cc { _ptr: self._ptr }
    }
}

impl<T: Default + Trace> Default for Cc<T> {
    /// Creates a new `Cc<T>`, with the `Default` value for `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let x: Cc<i32> = Default::default();
    /// ```
    #[inline]
    fn default() -> Cc<T> {
        Cc::new(Default::default())
    }
}

impl<T: PartialEq + Trace> PartialEq for Cc<T> {
    /// Equality for two `Cc<T>`s.
    ///
    /// Two `Cc<T>`s are equal if their inner value are equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five == Cc::new(5);
    /// ```
    #[inline(always)]
    fn eq(&self, other: &Cc<T>) -> bool { **self == **other }

    /// Inequality for two `Cc<T>`s.
    ///
    /// Two `Cc<T>`s are unequal if their inner value are unequal.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five != Cc::new(5);
    /// ```
    #[inline(always)]
    fn ne(&self, other: &Cc<T>) -> bool { **self != **other }
}

impl<T: Eq + Trace> Eq for Cc<T> {}

impl<T: PartialOrd + Trace> PartialOrd for Cc<T> {
    /// Partial comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five.partial_cmp(&Cc::new(5));
    /// ```
    #[inline(always)]
    fn partial_cmp(&self, other: &Cc<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five < Cc::new(5);
    /// ```
    #[inline(always)]
    fn lt(&self, other: &Cc<T>) -> bool { **self < **other }

    /// 'Less-than or equal to' comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five <= Cc::new(5);
    /// ```
    #[inline(always)]
    fn le(&self, other: &Cc<T>) -> bool { **self <= **other }

    /// Greater-than comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five > Cc::new(5);
    /// ```
    #[inline(always)]
    fn gt(&self, other: &Cc<T>) -> bool { **self > **other }

    /// 'Greater-than or equal to' comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five >= Cc::new(5);
    /// ```
    #[inline(always)]
    fn ge(&self, other: &Cc<T>) -> bool { **self >= **other }
}

impl<T: Ord + Trace> Ord for Cc<T> {
    /// Comparison for two `Cc<T>`s.
    ///
    /// The two are compared by calling `cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// five.partial_cmp(&Cc::new(5));
    /// ```
    #[inline]
    fn cmp(&self, other: &Cc<T>) -> Ordering { (**self).cmp(&**other) }
}

// FIXME (#18248) Make `T` `Sized?`
impl<T: Hash + Trace> Hash for Cc<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

impl<T: fmt::Display + Trace> fmt::Display for Cc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

impl<T: fmt::Debug + Trace> fmt::Debug for Cc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: Trace> fmt::Pointer for Cc<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&self._ptr, f)
    }
}

/// A weak version of `Cc<T>`.
///
/// Weak references do not count when determining if the inner value should be
/// dropped.
///
/// See the [module level documentation](./) for more.
pub struct Weak<T: Trace> {
    // FIXME #12808: strange names to try to avoid interfering with
    // field accesses of the contained type via Deref
    _ptr: NonNull<CcBox<T>>,
}

impl<T: Trace> Weak<T> {

    /// Upgrades a weak reference to a strong reference.
    ///
    /// Upgrades the `Weak<T>` reference to an `Cc<T>`, if possible.
    ///
    /// Returns `None` if there were no strong references and the data was
    /// destroyed.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let five = Cc::new(5);
    ///
    /// let weak_five = five.downgrade();
    ///
    /// let strong_five: Option<Cc<_>> = weak_five.upgrade();
    /// ```
    pub fn upgrade(&self) -> Option<Cc<T>> {
        if self.strong() == 0 {
            None
        } else {
            self.inc_strong();
            Some(Cc { _ptr: self._ptr })
        }
    }
}

impl<T: Trace> Drop for Weak<T> {
    /// Drops the `Weak<T>`.
    ///
    /// This will decrement the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// {
    ///     let five = Cc::new(5);
    ///     let weak_five = five.downgrade();
    ///
    ///     // stuff
    ///
    ///     drop(weak_five); // explicit drop
    /// }
    /// {
    ///     let five = Cc::new(5);
    ///     let weak_five = five.downgrade();
    ///
    ///     // stuff
    ///
    /// } // implicit drop
    /// ```
    fn drop(&mut self) {
        unsafe {
            if self.weak() > 0 {
                self.dec_weak();
                // The weak count starts at 1, and will only go to zero if all
                // the strong pointers have disappeared.
                if self.weak() == 0 {
                    dealloc(self._ptr.cast().as_ptr(), Layout::new::<CcBox<T>>())
                }
            }
        }
    }
}

impl<T: Trace> Clone for Weak<T> {

    /// Makes a clone of the `Weak<T>`.
    ///
    /// This increases the weak reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use bacon_rajan_cc::Cc;
    ///
    /// let weak_five = Cc::new(5).downgrade();
    ///
    /// weak_five.clone();
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T> {
        self.inc_weak();
        Weak { _ptr: self._ptr }
    }
}

impl<T: fmt::Debug + Trace> fmt::Debug for Weak<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

impl<T: Trace> Trace for Cc<T> {
    fn trace(&mut self, tracer: &mut Tracer) {
        unsafe {
            tracer(self._ptr.as_mut());
        }
    }
}

impl<T: Trace> Trace for Weak<T> {
    fn trace(&mut self, _tracer: &mut Tracer) {
        // Weak references should not be traced.
    }
}

impl<T: Trace> Trace for CcBox<T> {
    fn trace(&mut self, tracer: &mut Tracer) {
        Trace::trace(&mut self.value, tracer);
    }
}

#[doc(hidden)]
impl<T: Trace> CcBoxPtr for Cc<T> {
    #[inline(always)]
    fn data(&self) -> &CcBoxData {
        unsafe {
            // Safe to assume this here, as if it weren't true, we'd be breaking
            // the contract anyway.
            // This allows the null check to be elided in the destructor if we
            // manipulated the reference count in the same function.
            &self._ptr.as_ref().data
        }
    }

    unsafe fn drop_value(&mut self) {
        self._ptr.as_mut().drop_value();
    }

    unsafe fn deallocate(&mut self) {
        self._ptr.as_mut().deallocate();
    }
}

impl<T: Trace> CcBoxPtr for Weak<T> {
    #[inline(always)]
    fn data(&self) -> &CcBoxData {
        unsafe {
            // Safe to assume this here, as if it weren't true, we'd be breaking
            // the contract anyway.
            // This allows the null check to be elided in the destructor if we
            // manipulated the reference count in the same function.
            &self._ptr.as_ref().data
        }
    }

    unsafe fn drop_value(&mut self) {
        self._ptr.as_mut().drop_value();
    }

    unsafe fn deallocate(&mut self) {
        self._ptr.as_mut().deallocate();
    }
}

impl<T: Trace> CcBoxPtr for CcBox<T> {
    #[inline(always)]
    fn data(&self) -> &CcBoxData { &self.data }

    unsafe fn drop_value(&mut self) {
        // Destroy the contained object.
        ptr::read(&self.value);
    }

    unsafe fn deallocate(&mut self) {
        let ptr : *mut CcBox<T> = self;
        dealloc(NonNull::new_unchecked(ptr).cast().as_ptr(), Layout::new::<CcBox<T>>());
    }
}

#[cfg(test)]
mod tests {
    use super::{Cc, Weak, Trace, Tracer};
    use std::boxed::Box;
    use std::cell::RefCell;
    use std::option::Option;
    use std::option::Option::{Some, None};
    use std::result::Result::{Err, Ok};
    use std::mem::drop;
    use std::clone::Clone;

    // Tests copied from `Rc<T>`.

    #[test]
    fn test_clone() {
        let x = Cc::new(RefCell::new(5));
        let y = x.clone();
        *x.borrow_mut() = 20;
        assert_eq!(*y.borrow(), 20);
    }

    #[test]
    fn test_simple() {
        let x = Cc::new(5);
        assert_eq!(*x, 5);
    }

    #[test]
    fn test_simple_clone() {
        let x = Cc::new(5);
        let y = x.clone();
        assert_eq!(*x, 5);
        assert_eq!(*y, 5);
    }

    #[test]
    fn test_destructor() {
        let x: Cc<Box<_>> = Cc::new(Box::new(5));
        assert_eq!(**x, 5);
    }

    #[test]
    fn test_live() {
        let x = Cc::new(5);
        let y = x.downgrade();
        assert!(y.upgrade().is_some());
    }

    #[test]
    fn test_dead() {
        let x = Cc::new(5);
        let y = x.downgrade();
        drop(x);
        assert!(y.upgrade().is_none());
    }

    #[test]
    fn weak_self_cyclic() {
        struct Cycle {
            x: RefCell<Option<Weak<Cycle>>>
        }

        impl Trace for Cycle {
            fn trace(&mut self, _: &mut Tracer) { }
        }

        let a = Cc::new(Cycle { x: RefCell::new(None) });
        let b = a.clone().downgrade();
        *a.x.borrow_mut() = Some(b);

        // hopefully we don't double-free (or leak)...
    }

    #[test]
    fn is_unique() {
        let x = Cc::new(3);
        assert!(x.is_unique());
        let y = x.clone();
        assert!(!x.is_unique());
        drop(y);
        assert!(x.is_unique());
        let w = x.downgrade();
        assert!(!x.is_unique());
        drop(w);
        assert!(x.is_unique());
    }

    #[test]
    fn test_strong_count() {
        let a = Cc::new(0u32);
        assert!(a.strong_count() == 1);
        let w = a.downgrade();
        assert!(a.strong_count() == 1);
        let b = w.upgrade().expect("upgrade of live rc failed");
        assert!(b.strong_count() == 2);
        assert!(b.strong_count() == 2);
        drop(w);
        drop(a);
        assert!(b.strong_count() == 1);
        let c = b.clone();
        assert!(b.strong_count() == 2);
        assert!(c.strong_count() == 2);
    }

    #[test]
    fn test_weak_count() {
        let a = Cc::new(0u32);
        assert!(a.strong_count() == 1);
        assert!(a.weak_count() == 0);
        let w = a.downgrade();
        assert!(a.strong_count() == 1);
        assert!(a.weak_count() == 1);
        drop(w);
        assert!(a.strong_count() == 1);
        assert!(a.weak_count() == 0);
        let c = a.clone();
        assert!(a.strong_count() == 2);
        assert!(a.weak_count() == 0);
        drop(c);
    }

    #[test]
    fn try_unwrap() {
        let x = Cc::new(3);
        assert_eq!(x.try_unwrap(), Ok(3));
        let x = Cc::new(4);
        let _y = x.clone();
        assert_eq!(x.try_unwrap(), Err(Cc::new(4)));
        let x = Cc::new(5);
        let _w = x.downgrade();
        assert_eq!(x.try_unwrap(), Err(Cc::new(5)));
    }

    #[test]
    fn get_mut() {
        let mut x = Cc::new(3);
        *x.get_mut().unwrap() = 4;
        assert_eq!(*x, 4);
        let y = x.clone();
        assert!(x.get_mut().is_none());
        drop(y);
        assert!(x.get_mut().is_some());
        let _w = x.downgrade();
        assert!(x.get_mut().is_none());
    }


    #[test]
    fn test_cowrc_clone_make_unique() {
        let mut cow0 = Cc::new(75);
        let mut cow1 = cow0.clone();
        let mut cow2 = cow1.clone();

        assert!(75 == *cow0.make_unique());
        assert!(75 == *cow1.make_unique());
        assert!(75 == *cow2.make_unique());

        *cow0.make_unique() += 1;
        *cow1.make_unique() += 2;
        *cow2.make_unique() += 3;

        assert!(76 == *cow0);
        assert!(77 == *cow1);
        assert!(78 == *cow2);

        // none should point to the same backing memory
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 != *cow2);
    }

    #[test]
    fn test_cowrc_clone_unique2() {
        let mut cow0 = Cc::new(75);
        let cow1 = cow0.clone();
        let cow2 = cow1.clone();

        assert!(75 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        *cow0.make_unique() += 1;

        assert!(76 == *cow0);
        assert!(75 == *cow1);
        assert!(75 == *cow2);

        // cow1 and cow2 should share the same contents
        // cow0 should have a unique reference
        assert!(*cow0 != *cow1);
        assert!(*cow0 != *cow2);
        assert!(*cow1 == *cow2);
    }

    #[test]
    fn test_cowrc_clone_weak() {
        let mut cow0 = Cc::new(75);
        let cow1_weak = cow0.downgrade();

        assert!(75 == *cow0);
        assert!(75 == *cow1_weak.upgrade().unwrap());

        *cow0.make_unique() += 1;

        assert!(76 == *cow0);
        assert!(cow1_weak.upgrade().is_none());
    }

    #[test]
    fn test_show() {
        let foo = Cc::new(75);
        assert_eq!(format!("{:?}", foo), "75");
    }
}