bacon_sci_1/interp/
mod.rs1use super::polynomial::Polynomial;
8use nalgebra::ComplexField;
9
10mod spline;
11pub use spline::*;
12
13pub fn lagrange<N: ComplexField>(
33 xs: &[N],
34 ys: &[N],
35 tol: N::RealField,
36) -> Result<Polynomial<N>, String> {
37 if xs.len() != ys.len() {
38 return Err("lagrange: slices have mismatched dimension".to_owned());
39 }
40
41 let mut qs = vec![Polynomial::with_tolerance(tol)?; xs.len() * xs.len()];
42 for (ind, y) in ys.iter().enumerate() {
43 qs[ind] = polynomial![*y];
44 }
45
46 for i in 1..xs.len() {
47 let mut poly_2 = polynomial![N::one(), -xs[i]];
48 poly_2.set_tolerance(tol)?;
49 for j in 1..=i {
50 let mut poly_1 = polynomial![N::one(), -xs[i - j]];
51 poly_1.set_tolerance(tol)?;
52 let idenom = N::one() / (xs[i] - xs[i - j]);
53 let numer =
54 &poly_1 * &qs[i + xs.len() * (j - 1)] - &poly_2 * &qs[(i - 1) + xs.len() * (j - 1)];
55 qs[i + xs.len() * j] = numer * idenom;
56 }
57 }
58
59 for i in 0..=qs[xs.len() * xs.len() - 1].order() {
60 if qs[xs.len() * xs.len() - 1].get_coefficient(i).abs() < tol {
61 qs[xs.len() * xs.len() - 1].purge_coefficient(i);
62 }
63 }
64
65 qs[xs.len() * xs.len() - 1].purge_leading();
66 Ok(qs[xs.len() * xs.len() - 1].clone())
67}
68
69pub fn hermite<N: ComplexField>(
70 xs: &[N],
71 ys: &[N],
72 derivs: &[N],
73 tol: N::RealField,
74) -> Result<Polynomial<N>, String> {
75 if xs.len() != ys.len() {
76 return Err("hermite: slices have mismatched dimension".to_owned());
77 }
78 if xs.len() != derivs.len() {
79 return Err("hermite: derivatives have mismatched dimension".to_owned());
80 }
81
82 let mut zs = vec![N::zero(); 2 * xs.len()];
83 let mut qs = vec![N::zero(); 4 * xs.len() * xs.len()];
84
85 for i in 0..xs.len() {
86 zs[2 * i] = xs[i];
87 zs[2 * i + 1] = xs[i];
88 qs[2 * i] = ys[i];
89 qs[2 * i + 1] = ys[i];
90 qs[2 * i + 1 + (2 * xs.len())] = derivs[i];
91
92 if i != 0 {
93 qs[2 * i + (2 * xs.len())] = (qs[2 * i] - qs[2 * i - 1]) / (zs[2 * i] - zs[2 * i - 1]);
94 }
95 }
96
97 for i in 2..2 * xs.len() {
98 for j in 2..=i {
99 qs[i + j * (2 * xs.len())] = (qs[i + (j - 1) * (2 * xs.len())]
100 - qs[i - 1 + (j - 1) * (2 * xs.len())])
101 / (zs[i] - zs[i - j]);
102 }
103 }
104
105 let mut hermite = polynomial![N::zero()];
106 for i in (1..2 * xs.len()).rev() {
107 hermite += qs[i + i * (2 * xs.len())];
108 hermite *= polynomial![N::one(), -xs[(i - 1) / 2]]
109 }
110 hermite += qs[0];
111
112 for i in 0..=hermite.order() {
113 if hermite.get_coefficient(i).abs() < tol {
114 hermite.purge_coefficient(i);
115 }
116 }
117
118 hermite.purge_leading();
119 Ok(hermite)
120}